Answer: 
Explanation:
The Compton Shift
in wavelength when the photons are scattered is given by the following equation:
(1)
Where:
is a constant whose value is given by
, being
the Planck constant,
the mass of the electron and
the speed of light in vacuum.
the angle between incident phhoton and the scatered photon.
We are told the maximum Compton shift in wavelength occurs when a photon isscattered through
:
(2)
(3)
Now, let's find the angle that will produce a fourth of this maximum value found in (3):
(4)
(5)
If we want
,
must be equal to 1:
(6)
Finding
:
Finally:
This is the scattering angle that will produce
Answer:
He is warmed up now
Explanation:
His muscles are better and stretched now
Answer:
0.0473m
Explanation:
345 ml = 0.000354 m3
6.5 cm = 0.065 m
20g = 0.02 kg
Since can is half filled with water, the water volume is 0.000354 / 2 = 0.000177 m cubed
Let water density be 1000kg/m3, the mass of this half-filled water is
1000*0.000177 = 0.177 kg
The total water-can system mass is 0.177 + 0.02 = 0.197 kg
For the system to stay balanced, this mass would be equal to the mass of the water displaced by the can submerged
The volume of water displaced, or submerged can is
0.197 / 1000 = 0.000197 m cubed
Then the volume of the can that is not submerged, aka above water level is
0.000354 - 0.000197 = 0.000157 m cubed
The base area of the can is

The length of the can that is above water is
0.000157 / 0.003318 = 0.0473 m
Answer:
Time seem to flow in only one direction because it's from entropy. In tiny physics, time is directionally neutral.
Explanation:
Answer:
Explanation:
Given that,
Magnetic field of 0.24T
B = 0.24T
Field perpendicular to plane i.e 90°
Rate of decrease of length of side of square is 5.4cm/s
dL/dt = 5.4cm/s = 0.054m/s
Since it is decreasing
Then, dL/dt = -0.054m/s
When L is 14cm, what is the EMF induced?
L = 14cm = 0.14m
EMF is give as
ε = - dΦ/dt
Where flux is given as
Φ = BA
Where A is the area of the square
A = L²
Then, Φ = BL²
Substituting this into the EMF
ε = - dΦ/dt
ε = - d(BL²)/dt
B is constant
ε = - Bd(L²)/dt
ε = -2BL dL/dr
ε = -2 × 0.24 × 0.14 × -0.054
ε = 3.63 × 10^-3 V
ε = 3.63mV