Heat = m x c x Δθ
2000 = 2 x c x 5
Specific heat c = 200 J / Kg / C
stable equilibrium, if displaced from equilibrium, it experiences a net force or torque in a direction opposite to the direction of the displacement.
unstable equilibrium, if displaced it experiences a net force or torque in the same direction as the displacement from equilibrium. A system in unstable equilibrium accelerates away from its equilibrium position if displaced even slightly.
neutral equilibrium, is when an equilibrium is independent of displacements from its original position.
Have a good day, hope this helps
DaddyFed is right, it would be all of them.
Answer:
37.5 N Hard
Explanation:
Hook's law: The force applied to an elastic material is directly proportional to the extension provided the elastic limit of the material is not exceeded.
Using the expression for hook's law,
F = ke.............. Equation 1
F = Force of the athlete, k = force constant of the spring, e = extension/compression of the spring.
Given: k = 750 N/m, e = 5.0 cm = 0.05 m
Substitute into equation 1
F = 750(0.05)
F = 37.5 N
Hence the athlete is pushing 37.5 N hard
Answer:
correct option is d) 7.0 x 10^-7 N
Explanation:
given data
distance = 175 picometers = 1.75 ×
m
to find out
electrical force
solution
we know atomic no of uranium is 92
and charge on electron is = 1.6 ×
C
and electrical force is express as
electrical force =
.............1
put here value we get
electrical force = 
electrical force = 6.921 ×
N
so correct option is d) 7.0 x 10^-7 N