36% = 36/100 divide both numerator and denominator by 4 gives you 9/25
Given the domain {-4, 0, 5}, what is the range for the relation 12x 6y = 24? a. {2, 4, 9} b. {-4, 4, 14} c. {12, 4, -6} d. {-12,
xz_007 [3.2K]
The domain of the function 12x + 6y = 24 exists {-4, 0, 5}, then the range of the function exists {12, 4, -6}.
<h3>How to determine the range of a function?</h3>
Given: 12x + 6y = 24
Here x stands for the input and y stands for the output
Replacing y with f(x)
12x + 6f(x) = 24
6f(x) = 24 - 12x
f(x) = (24 - 12x)/6
Domain = {-4, 0, 5}
Put the elements of the domain, one by one, to estimate the range
f(-4) = (24 - 12((-4))/6
= (72)/6 = 12
f(0) = (24 - 12(0)/6
= (24)/6 = 4
f(5) = (24 - 12(5)/6
= (-36)/6 = -6
The range exists {12, 4, -6}
Therefore, the correct answer is option c. {12, 4, -6}.
To learn more about Range, Domain and functions refer to:
brainly.com/question/1942755
#SPJ4
Answer:
y = -3x - 1
Use the methods on your other questions.
Answer:
(-∞,-9)
Step-by-step explanation:
Answer:
Step-by-step explanation:
Answer: A.) 2 <= X <= 6
B.) 13 < = X < = 39
Step-by-step explanation:
Given that a factory can work its employees no more than 6 days a week, that is, less than or equal to 6 days a week
And also, no less than 2 days per week. That is, greater than or equal to 2 day a week.
Let X represent the number of days an employee can work per week.
According to the first statement,
X < = 6
According to the second statement,
X >= 2
An inequality to represent the range of days an employee can work will be
2 < = X <= 6
To represent the range in hours, first convert the number of days to hour. Given that an employee can work
1 day = 6.5 hours
2 days = 2 × 6.5 = 13 hours
5 days = 6 × 6.5 = 39 hours
Therefore, the range will be
13 < = X < = 39