Answer:
=========
<h2>Given</h2>
<h3>Line 1</h3>
<h3>Line 2</h3>
- Passing through the points (4, 3) and (5, - 3)
<h2>To find</h2>
- The value of k, if the lines are perpendicular
<h2>Solution</h2>
We know the perpendicular lines have opposite reciprocal slopes, that is the product of their slopes is - 1.
Find the slope of line 1 by converting the equation into slope-intercept from standard form:
<u><em>Info:</em></u>
- <em>standard form is ⇒ ax + by + c = 0, </em>
- <em>slope - intercept form is ⇒ y = mx + b, where m is the slope</em>
- 3x - ky + 7 = 0
- ky = 3x + 7
- y = (3/k)x + 7/k
Its slope is 3/k.
Find the slope of line 2, using the slope formula:
- m = (y₂ - y₁)/(x₂ - x₁) = (-3 - 3)/(5 - 4) = - 6/1 = - 6
We have both the slopes now. Find their product:
- (3/k)*(- 6) = - 1
- - 18/k = - 1
- k = 18
So when k is 18, the lines are perpendicular.
Answer:
it doesnt want to load for me im sorry :(
Step-by-step explanation:
To calculate the slope you need to do (y2-y1)/(x2-x1). So you would get:
(17-12)/(4-9)
5/-5
=-1
Hope this helps.
Answer:
y'(t) = k(700,000-y(t)) k>0 is the constant of proportionality
y(0) =0
Step-by-step explanation:
(a.) Formulate a differential equation and initial condition for y(t) = the number of people who have heard the news t days after it has happened.
If we suppose that news spreads through a city of fixed size of 700,000 people at a time rate proportional to the number of people who have not heard the news that means
<em>dy/dt = k(700,000-y(t)) </em>where k is some constant of proportionality.
Since no one has heard the news at first, we have
<em>y(0) = 0 (initial condition)
</em>
We can then state the initial value problem as
y'(t) = k(700,000-y(t))
y(0) =0
Answer: b
Step-by-step explanation:
I took the test and got it right
good luck!