To solve the problem, we need to get the formula for area of a circle -
Area = pi * r^2; r= radius
= 3.14 * (13cm)^2
= 3.14 * 169cm^2 or 3.14 * 13^2cm^2
= 530.66cm^2
Therefore, the area of the circular plate is 530.66cm^2
![\sf \frac{6}{30} = \frac{x}{100}](https://tex.z-dn.net/?f=%20%5Csf%20%5Cfrac%7B6%7D%7B30%7D%20%20%3D%20%20%5Cfrac%7Bx%7D%7B100%7D%20)
Solve for x by cross multiplication
![\sf6 \times 100 = x \times 30](https://tex.z-dn.net/?f=%20%5Csf6%20%5Ctimes%20100%20%3D%20x%20%5Ctimes%2030)
![\sf \: 600 = 30x](https://tex.z-dn.net/?f=%20%5Csf%20%5C%3A%20600%20%3D%2030x)
- Swap the sides of equation
![\sf \: 30x = 600](https://tex.z-dn.net/?f=%20%5Csf%20%5C%3A%2030x%20%3D%20600)
- Divide both sides of equation by 30
![\boxed{ \tt \: x = 20}](https://tex.z-dn.net/?f=%20%5Cboxed%7B%20%5Ctt%20%5C%3A%20x%20%3D%2020%7D)
6x + 5 = 4x + 5
2x + 5 = 5
2x = 0, x = 0
Y = 6(0) + 5, y = 5
Solution: x = 0, y = 5
Algebra -> Polygons<span> -> SOLUTION: </span>Each exterior angle<span> is 100º </span>less than<span> its </span>interior angle<span> of ...</span>180<span>-x = </span>measure<span> of the corresponding </span>exterior angle<span> in degrees. </span>At each<span> vertex, there is an </span>interior angle<span> of </span>the polygon. ... The sum of the angles in those triangles (180+180<span>=360) is the same as the sum ... If a regular </span>polygon<span> has x sides, </span>then<span> the degree </span>measure<span>of </span>each exterior angle<span> is 360 divided by x.
</span>
Answer:
0.046231
just use a calculator my dude