The perimeter is 10 +10+9+9 so its 38
Answer:
1/3(5.2)h cm³
Step-by-step explanation:
A solid right pyramid has a regular hexagonal base with an area of 5.2 cm2 and a height of h cm. Which expression represents the volume of the pyramid?
One-fifth(5.2)h cm3 StartFraction 1 Over 5 h EndFraction(5.2)h cm3
One-third(5.2)h cm3 StartFraction 1 Over 3 h EndFraction(5.2)h cm3
Volume of the pyramid = 1/3 × area × height
Area = 5.2 cm²
Height = h cm
Volume of the pyramid = 1/3 × 5.2 cm² × h cm
= 1/3(5.2)h cm³
Answer:
0.0036 i think this is the answer. I don't really know.
(3 * x) - 4 is the expression.
<h2>f</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>=</h2><h2>x</h2><h2>3</h2><h2>−</h2><h2>9</h2><h2>x</h2><h2>2</h2><h2>+</h2><h2>24</h2><h2>x</h2><h2>−</h2><h2>10</h2><h2>Taking first derivative of</h2><h2> </h2><h2> </h2><h2>f</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>f</h2><h2>′</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>=</h2><h2>3</h2><h2>x</h2><h2>2</h2><h2>−</h2><h2>18</h2><h2>x</h2><h2>+</h2><h2>24</h2><h2>For finding critical points substituting</h2><h2> </h2><h2>f</h2><h2>′</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>=</h2><h2>0</h2><h2>f</h2><h2>′</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>=</h2><h2>0</h2><h2> </h2><h2>⇒</h2><h2>3</h2><h2>x</h2><h2>2</h2><h2>−</h2><h2>18</h2><h2>x</h2><h2>+</h2><h2>24</h2><h2>=</h2><h2>0</h2><h2> </h2><h2>⇒</h2><h2>3</h2><h2>(</h2><h2>x</h2><h2>2</h2><h2>−</h2><h2>6</h2><h2>x</h2><h2>+</h2><h2>8</h2><h2>)</h2><h2>=</h2><h2>0</h2><h2>(</h2><h2>x</h2><h2>−</h2><h2>4</h2><h2>)</h2><h2>(</h2><h2>x</h2><h2>−</h2><h2>2</h2><h2>)</h2><h2>=</h2><h2>0</h2><h2>After solving the value of x is</h2><h2>x</h2><h2>=</h2><h2>2</h2><h2>,</h2><h2>4</h2><h2>Thus critical points at</h2><h2> </h2><h2> </h2><h2>x</h2><h2>=</h2><h2>2</h2><h2>,</h2><h2>4</h2>