Answer: 2 lbs of cherries
Cherries = $5 per pound
Oranges = $2 per pound
Total Cost = $18
Total weight = 6 lb
------------------------------------
Define x and y
------------------------------------
Let x be the number of lb of cherries
Let y be the number of lb of oranges
------------------------------------
Construct equations
------------------------------------
x + y = 6 ---------------------------- (1)
5x + 2y = 18 ---------------------------- (2)
------------------------------------------------------------------------
Solve x and y
------------------------------------------------------------------------
From equation (1):
x + y = 6
x = 6 - y
------------------------------------------------------------------------
Substitute x = 6 - y into equation 2
------------------------------------------------------------------------
5x + 2y = 18
5 (6 - y) + 2y = 18
30 - 5y + 2y = 18
3y = 30 - 18
3y = 12
y = 4
------------------------------------------------------------------------
Substitute y = 4 into equation (1)
------------------------------------------------------------------------
x + y = 6
x + 4 = 6
x = 2
------------------------------------------------------------------------
Find the weight of cherries and oranges
------------------------------------------------------------------------
Cherry = x = 2 lb
Oranges = y = 4 lbs
------------------------------------------------------------------------
Answer: Alex bought 2 lb of cherries
------------------------------------------------------------------------
Intercept form is: y = a(x - p)(x - q)
It is given that: p = 14, q = -6, x = 14, y = 4
4 = a(14 - 12)(14 - (-6))
4 = a(2)(20)
4 = 40a


Answer: y =
(x - 14)(x + 6)
Since the variable x has an invisible one next to it, which is 1x, it is 6x.
Answer: 1/3 x + -1
Step-by-step explanation:
Answer:
The Transitive Property for x and y
Step-by-step explanation: