Answer:
1) m∠U = 90°
2) m∠C = 80°
Step-by-step explanation:
1) The given figure is a quadrilateral
The sum of the interior angles of quadrilateral = 360°
∴ The sum of the interior angles of the given figure = 360°
Therefore, we have;
80° + 24·x + 4 + 6 + 21·x + 90° = 360°
80° + 45·x + 10 + 90° = 360°
x = (360°- (80° + 10° + 90°))/45 = 4
x = 4
m∠U = 6 + 21·x = 6 + 21 × 4 = 90
m∠U = 90°
2) The sum of the interior angles of the given quadrilateral = 360°
∴ 21·x + 6 + 20·x + 24·x + 4 + 21·x + 6 = 360°
86·x + 16 = 360°
x = (360° - 16°)/86 = 4
x = 4
m∠C = 20·x = 20 × 4 = 80
m∠C = 80°
3) In the figure, some angles are left out, therefore, more information on the remaining angles required