Answer:
its D
Step-by-step explanation:
I will do Point A carefully, The others I will indicate. Start with the Given Point A. Then do the translations
A(-1,2) Original Point
Reflection: about x axis:x stays the same; y becomes -y:Result(-1,-2)
T<-3,4>: x goes three left, y goes 4 up (-1 - 3, -2 + 4): Result(-4,2)
R90 CCW: Point (x,y) becomes (-y , x ) So (-4,2) becomes(-2, - 4): Result (-2, - 4)
B(4,2) Original Point
- Reflection: (4, - 2)
- T< (-3,4): (4-3,-2 + 4): (1 , 2)
- R90 CCW: (-y,x) = (-2 , 1)
C(4, -5) Original Point
- Reflection (4,5)
- T<-3,4): (4 - 3, 5 + 4): (1,9)
- R90, CCW (-9 , 1)
D(-1 , -5) Original Point
- Reflection (-1,5)
- T(<-3,4): (-1 - 3, 5 + 4): (-4,9)
- R90, CCW ( - 9, - 4)
Note: CCW means Counter Clockwise
The graph on the left is the same one you have been given.
The graph on the right is the same figure after all the transformations
You find the eigenvalues of a matrix A by following these steps:
- Compute the matrix
, where I is the identity matrix (1s on the diagonal, 0s elsewhere) - Compute the determinant of A'
- Set the determinant of A' equal to zero and solve for lambda.
So, in this case, we have
![A = \left[\begin{array}{cc}1&-2\\-2&0\end{array}\right] \implies A'=\left[\begin{array}{cc}1&-2\\-2&0\end{array}\right]-\left[\begin{array}{cc}\lambda&0\\0&\lambda\end{array}\right]=\left[\begin{array}{cc}1-\lambda&-2\\-2&-\lambda\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26-2%5C%5C-2%260%5Cend%7Barray%7D%5Cright%5D%20%5Cimplies%20A%27%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26-2%5C%5C-2%260%5Cend%7Barray%7D%5Cright%5D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Clambda%260%5C%5C0%26%5Clambda%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1-%5Clambda%26-2%5C%5C-2%26-%5Clambda%5Cend%7Barray%7D%5Cright%5D)
The determinant of this matrix is

Finally, we have

So, the two eigenvalues are

Answer:
(4, 5)
Step-by-step explanation:
y = 2x - 3
y = 7 - 0.5x
y is already isolated on both equations, set them equal to each other:
2x - 3 = 7 - 0.5x
add 3 to both sides:
2x = 10 - 0.5x
add 0.5x to both sides:
2.5x = 10
divide by 2.5:
x = 4
plug in 4 for x on either equation and solve for y:
y = 2(4) - 3
y = 8 - 3
y = 5
(4, 5)
Is ten thousand time hope it works