1.) Solve for x:
5 x + 7 = 3 x + 21
Subtract 3 x from both sides:
(5 x - 3 x) + 7 = (3 x - 3 x) + 21
5 x - 3 x = 2 x:
2 x + 7 = (3 x - 3 x) + 21
3 x - 3 x = 0:
2 x + 7 = 21
Subtract 7 from both sides:
2 x + (7 - 7) = 21 - 7
7 - 7 = 0:
2 x = 21 - 7
21 - 7 = 14:
2 x = 14
Divide both sides of 2 x = 14 by 2:
(2 x)/2 = 14/2
2/2 = 1:
x = 14/2
The gcd of 14 and 2 is 2, so 14/2 = (2×7)/(2×1) = 2/2×7 = 7:
Answer:  x = 7
____________________________________________________________
2.)  Solve for x:
3 x - 2 (5 - x) = 3 x - 3 (x - 10)
-2 (5 - x) = 2 x - 10:
2 x - 10 + 3 x = 3 x - 3 (x - 10)
Grouping like terms, 3 x + 2 x - 10 = (3 x + 2 x) - 10:
(3 x + 2 x) - 10 = 3 x - 3 (x - 10)
3 x + 2 x = 5 x:
5 x - 10 = 3 x - 3 (x - 10)
-3 (x - 10) = 30 - 3 x:
5 x - 10 = 30 - 3 x + 3 x
3 x - 3 x = 0:
5 x - 10 = 30
Add 10 to both sides:
5 x + (10 - 10) = 10 + 30
10 - 10 = 0:
5 x = 30 + 10
30 + 10 = 40:
5 x = 40
Divide both sides of 5 x = 40 by 5:
(5 x)/5 = 40/5
5/5 = 1:
x = 40/5
The gcd of 40 and 5 is 5, so 40/5 = (5×8)/(5×1) = 5/5×8 = 8:
<span>Answer: x = 8
_________________________________________________________
3.) Solve for x:</span>
5 (x + 1) = 3 (2 x + 3) + 5
3 (2 x + 3) = 6 x + 9:
5 (x + 1) = 6 x + 9 + 5
Grouping like terms, 6 x + 5 + 9 = 6 x + (9 + 5):
5 (x + 1) = 6 x + (9 + 5)
9 + 5 = 14:
5 (x + 1) = 6 x + 14
Expand out terms of the left hand side:
5 x + 5 = 6 x + 14
Subtract 6 x from both sides:
(5 x - 6 x) + 5 = (6 x - 6 x) + 14
5 x - 6 x = -x:
-x + 5 = (6 x - 6 x) + 14
6 x - 6 x = 0:
5 - x = 14
Subtract 5 from both sides:
(5 - 5) - x = 14 - 5
5 - 5 = 0:
-x = 14 - 5
14 - 5 = 9:
-x = 9
Multiply both sides of -x = 9 by -1:
(-x)/(-1) = -9
(-1)/(-1) = 1:
<span>Answer: x = -9</span>
        
             
        
        
        
bearing in mind that standard form for a linear equation means
• all coefficients must be integers, no fractions
• only the constant on the right-hand-side
• all variables on the left-hand-side, sorted
• "x" must not have a negative coefficient

![\bf \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-7=1[x-(-1)]\implies y-7=x+1 \\\\\\ y=x+8\implies \boxed{-x+y=8}\implies \stackrel{\textit{standard form}}{x-y=-8}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-7%3D1%5Bx-%28-1%29%5D%5Cimplies%20y-7%3Dx%2B1%20%5C%5C%5C%5C%5C%5C%20y%3Dx%2B8%5Cimplies%20%5Cboxed%7B-x%2By%3D8%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bstandard%20form%7D%7D%7Bx-y%3D-8%7D)
just to point something out, is none of the options, however -x + y = 8, is one, though improper.
 
        
             
        
        
        
40/100×120=4/1×12=48. 1/4×200=50. so 1/4 of 200 is greater than 40% of 120.
        
                    
             
        
        
        
Answer: 8.37 in³
Step-by-step explanation:
Given the following :
Shape of icre cream scoop = sphere
Radius (r) = 1 inch
Volume of a scoop of icecream = volume of sphere :
4/3πr³
(4/3) × 3.14 × 1³
1.333 × 3.14 × 1 
= 4.1867 in³
Hence, the volume of 2 scoops of ice cream will be : 
2 × ( volume of a scoop of ice cream)
(2 × 4.1867) in³
= 8.37 in³