<em>The formula of calcium carbonate is CaCO3
</em>
<em>The formula of nitric acid is HNO3.
</em>
<em>When put together:</em>
<em>CaCO3 + HNO3 </em><em>= </em><em>Ca(NO3)2 + CO2 + H2O
</em>
<em>
The balanced equation:</em>
<em>
CaCO3 + 2HNO3</em><em> = </em><em>Ca(NO3)2 + CO2 + H2O
</em>
<em>
</em>
<em></em>
<u>Answer:</u> The empirical and molecular formula of the compound is
and
respectively
<u>Explanation:</u>
We are given:
Mass of C = 3.758 g
Mass of H = 0.316 g
Mass of O = 1.251 g
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Moles of Carbon =
Moles of Hydrogen = 
Moles of Oxygen = 
- <u>Step 2:</u> Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.078 moles.
For Carbon = 
For Hydrogen = 
For Oxygen = 
- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of C : H : O = 4 : 4 : 1
The empirical formula for the given compound is 
For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.
The equation used to calculate the valency is:

We are given:
Mass of molecular formula = 130 g/mol
Mass of empirical formula = 68 g/mol
Putting values in above equation, we get:

Multiplying this valency by the subscript of every element of empirical formula, we get:

Hence, the empirical and molecular formula of the compound is
and
respectively
to convert m into km we have to divide it by 1000.so,
9426/1000=9.426km
92.2km+9.426km=101.626km.
Answer :
AgI should precipitate first.
The concentration of
when CuI just begins to precipitate is, 
Percent of
remains is, 0.0076 %
Explanation :
for CuI is 
for AgI is 
As we know that these two salts would both dissociate in the same way. So, we can say that as the Ksp value of AgI has a smaller than CuI then AgI should precipitate first.
Now we have to calculate the concentration of iodide ion.
The solubility equilibrium reaction will be:

The expression for solubility constant for this reaction will be,
![K_{sp}=[Cu^+][I^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCu%5E%2B%5D%5BI%5E-%5D)
![1\times 10^{-12}=0.0079\times [I^-]](https://tex.z-dn.net/?f=1%5Ctimes%2010%5E%7B-12%7D%3D0.0079%5Ctimes%20%5BI%5E-%5D)
![[I^-]=1.25\times 10^{-10}M](https://tex.z-dn.net/?f=%5BI%5E-%5D%3D1.25%5Ctimes%2010%5E%7B-10%7DM)
Now we have to calculate the concentration of silver ion.
The solubility equilibrium reaction will be:

The expression for solubility constant for this reaction will be,
![K_{sp}=[Ag^+][I^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BAg%5E%2B%5D%5BI%5E-%5D)
![8.3\times 10^{-17}=[Ag^+]\times 1.25\times 10^{-10}M](https://tex.z-dn.net/?f=8.3%5Ctimes%2010%5E%7B-17%7D%3D%5BAg%5E%2B%5D%5Ctimes%201.25%5Ctimes%2010%5E%7B-10%7DM)
![[Ag^+]=6.64\times 10^{-7}M](https://tex.z-dn.net/?f=%5BAg%5E%2B%5D%3D6.64%5Ctimes%2010%5E%7B-7%7DM)
Now we have to calculate the percent of
remains in solution at this point.
Percent of
remains = 
Percent of
remains = 0.0076 %
<span>In the periodic table, the elements are organized into groups based on putting together elements with similar properties. For instance, elements in each group have the same number of valence electrons, which makes them form similar bonds. Additionally, elements in the same similar characteristics, such as malleability and magnetism.</span>