Answer:
The rate of disappearance of C₂H₆O = 2.46 mol/min
Explanation:
The equation of the reaction is given below:
2 K₂Cr₂O₇ + 8 H₂SO₄ + 3 C₂H₆O → 2 Cr₂(SO₄)₃ + 2 K₂SO₄ + 11 H₂O
From the equation of the reaction, 3 moles of C₂H₆O is used when 2 moles of Cr₂(SO₄)₃ are produced, therefore, the mole ratio of C₂H₆O to Cr₂(SO₄)₃ is 3:2.
The rate of appearance of Cr₂(SO₄)₃ in that particular moment is given 1.64 mol/min. This would than means that C₂H₆O must be used up at a rate which is approximately equal to their mole ratios. Thus, the rate of of the disappearance of C₂H₆O can be calculated from the mole ratio of Cr₂(SO₄)₃ and C₂H₆O.
Rate of disappearance of C₂H₆O = 1.64 mol/min of Cr₂(SO₄)₃ * 3 moles of C₂H₆O / 2 moles of Cr₂(SO₄)₃
Rate of disappearance of C₂H₆O = 2.46 mol/min of C₂H₆O
Therefore, the rate of disappearance of C₂H₆O = 2.46 mol/min
Answer : (4) Chromatography
Explanation :
Chromatography : It is a separation technique of a mixture by passing it through a medium in which components travels at different rates.
There are many types of chromatography but this is paper chromatography.
Paper chromatography : It is used to separate the colored substances. In paper chromatography, water is the mobile phase and paper is the stationary phase. The mixture of components moves at different speeds through the stationary phase so that they can be separated.
In paper chromatography, several colors can be separated based on their solubility. The more soluble a color is, the more readily it will dissolve in mobile phase and farther it will travel.
Answer:
2?
Explanation:
Well the rocks can be thrown around or just start breaking down. Sorry if I'm not correct