The newton is the SI unit for force; it is equal to the amount of net force required to accelerate a mass of one kilogram at a rate of one meter per second squared. Newton's second law of motion states: F = ma, multiplying m (kg) by a (m/s 2 ).
I don't understand your question, but I think that would help.
Answer:
it is a physical change because when you heat up again a solution of sugar and tea you gonna obtain again sugar
Answer:
for the reaction is 18.05
Explanation:
Equilibrium constant in terms of partial pressure (
) for this reaction can be written as-

where
and
are equilibrium partial pressure of
and
respectively
Hence
= 18.05
So,
for the reaction is 18.05
Answer:
1.8 moles of NaCl must be produced.
Explanation:
Based on the reaction:
HCl + NaOH → NaCl + H2O
<em>1 mol of HCl reacts with 1 mol of NaOH to produce 1mol of NaCl</em>
<em />
To solve this question we must find, as first, the <em>limiting reactant:</em>
<em />
1.8 moles of HCl will need 1.8 moles of NaOH for a complete reaction (Ratio of reaction 1:1). As there are 3.3 moles of NaOH,
<em>HCl is limiting reactant</em>
<em />
When the 1.8 moles of HCl react completely,
1.8 moles of NaCl must be produced because 1 mole of HCl produce 1 mole of NaCl
This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm