It’s a car and it goes vroom vroom
Answer:
(1) 2553 N = 2550 N
(2) 58342 m = 58300 m
(3) 68.534 s = 68.5 s
Explanation:
To round off a number to any significant number start from the last digit, round it off to 1 if the number is up to 5 and to 0 if the last digit is less than 5. Add this 1 or 0 to the preceding digit and continue the process until you are left with three non zero digits, if you are rounding off to three significant figures.
(1) Round off 2553 N to three significant figures.
= 2550 N
(2) Round off 58342 m to three significant figures.
= 58300 m
(3) Round off 68.534 s to three significant figures.
= 68.500 s (zero after decimal point is insignificant)
= 68.5 s
Answer:
Given that

LHS of above given equation have dimension
.
Now find the dimension of RHS
Dimension of P =
.
Dimension of d=
.
Dimension of μ =
.
Dimension of L=
.
So
![\dfrac{\Delta Pd^2}{32\mu L}=\dfrac{[ML^{-1}T^{-2}].[M^{0}L^{1}T^{0}]^2}{[ML^{-1}T^{-1}].[M^{0}L^{1}T^{0}]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5CDelta%20Pd%5E2%7D%7B32%5Cmu%20L%7D%3D%5Cdfrac%7B%5BML%5E%7B-1%7DT%5E%7B-2%7D%5D.%5BM%5E%7B0%7DL%5E%7B1%7DT%5E%7B0%7D%5D%5E2%7D%7B%5BML%5E%7B-1%7DT%5E%7B-1%7D%5D.%5BM%5E%7B0%7DL%5E%7B1%7DT%5E%7B0%7D%5D%7D)
![\dfrac{\Delta Pd^2}{32\mu L}=[M^0L^{1}T^{-1}]](https://tex.z-dn.net/?f=%5Cdfrac%7B%5CDelta%20Pd%5E2%7D%7B32%5Cmu%20L%7D%3D%5BM%5E0L%5E%7B1%7DT%5E%7B-1%7D%5D)
It means that both sides have same dimensions.
Hexadecimal is a base16 way of representing numerical values in a way a human can remember, it is not easier for the computer to read it but it is for a human. Hex can have both letters and numbers, as soon as the binary value gets above 9 it is replaced with a letter. Numbers are used from 0 to 9 and letters are used between binary values 10 and 16, hex does not go above 16 instead it just simply gets another digit.
For example, if there is a hex code of D9 then in decimal, it represents the number 139.
Hope this helps!
Answer:-0.4199 J/k
Explanation:
Given data
mass of nitrogen(m)=1.329 Kg
Initial pressure
=120KPa
Initial temperature
300k
Final volume is half of initial
R=particular gas constant
Therefore initial volume of gas is given by
PV=mRT
V=0.986\times 10^{-3}
Using
=constant
=
=337.066KPa
=
and entropy is given by
=
+
Where,
=
=0.6059
=
=0.9027
Substituting values we get
=
+
=-0.4199 J/k