Answer:
the elevation at point X is 2152.72 ft
Explanation:
given data
elev = 2156.77 ft
BS = 2.67 ft
FS = 6.72 ft
solution
first we get here height of instrument that is
H.I = elev + BS ..............1
put here value
H.I = 2156.77 ft + 2.67 ft
H.I = 2159.44 ft
and
Elevation at point (x) will be
point (x) = H.I - FS .............2
point (x) = 2159.44 ft - 6.72 ft
point (x) = 2152.72 ft
Answer:
938.7 milliseconds
Explanation:
Since the transmission rate is in bits, we will need to convert the packet size to Bits.
1 bytes = 8 bits
1 MiB = 2^20 bytes = 8 × 2^20 bits
5 MiB = 5 × 8 × 2^20 bits.
The formula for queueing delay of <em>n-th</em> packet is : (n - 1) × L/R
where L : packet size = 5 × 8 × 2^20 bits, n: packet number = 48 and R : transmission rate = 2.1 Gbps = 2.1 × 10^9 bits per second.
Therefore queueing delay for 48th packet = ( (48-1) ×5 × 8 × 2^20)/2.1 × 10^9
queueing delay for 48th packet = (47 ×40× 2^20)/2.1 × 10^9
queueing delay for 48th packet = 0.938725181 seconds
queueing delay for 48th packet = 938.725181 milliseconds = 938.7 milliseconds
Answer: um wuh anyways thxs for the points!
Explanation: ....:/
Answer:
b) false
Explanation:
We know that Otto cycle is the ideal cycle for all petrol working engine.In Otto cycle all process are consider is ideal ,means there is no any ir-reversibility in the processes.
It consist four processes
1-2:Reversible adiabatic compression
2-3:Constant volume heat addition
3-4:Reversible adiabatic expansion
3-4:Constant volume heat rejection
Along with above 4 processes intake and exhaust processes are parallel to each other.From the P-v diagram we can see that all processes.
But actually in general we are not showing intake and exhaust line then it did not mean that in Otto cycle did not have intake and exhaust processes.