

- <u>A </u><u>triangle </u><u>with </u><u>sides </u><u>11m</u><u>, </u><u> </u><u>13m </u><u>and </u><u>18m</u>

- <u>We</u><u> </u><u>have </u><u>to </u><u>check </u><u>it </u><u>whether </u><u>it </u><u>is </u><u>right </u><u>angled </u><u>triangle </u><u>or </u><u>not</u><u>? </u>


According to the Pythagoras theorem, The sum of the squares of perpendicular height and the square of the base of the triangle is equal to the square of hypotenuse that is sum of the squares of two small sides equal to the square of longest side of the triangle.
<u>We </u><u>imply</u><u> </u><u>it </u><u>in </u><u>the </u><u>given </u><u>triangle </u><u>,</u>





<u>From </u><u>Above </u><u>we </u><u>can </u><u>conclude </u><u>that</u><u>, </u>
The sum of the squares of two small sides that is perpendicular height and base is not equal to the square of longest side that is Hypotenuse

Answer:
Step-by-step explanation:
14 pounds 9 ounces = 233 ounces
9 pounds 14 ounces = 158 ounces
233-158=75 ounces=4 pounds 11 ounces
Answer:
h(d) = (17/3249)(-d² +114d)
Step-by-step explanation:
For this purpose, it is convenient to translate and scale a quadratic parent function so it has the desired characteristics. We can start with the function ...
f(x) = 1 -x² . . . . . . . has zeros at x = ±1 and a vertex at (0, 1)
We want to horizontally expand this function by a factor of 57, so we can replace x by x/57. We want to vertically scale it by a factor of 17, so the vertex is at (0, 17). Finally, we want to translate the function 57 m to the right, which requires replacing x with x-57. After these transformations, we have ...
f(x) = 17(1 -((x-57)/57)²) = (17/3249)(-x²+114x)
Using the appropriate function name and variable, we have ...
h(d) = (17/3249)(-d² +114d)