Answer:
the perimeter is 18
Step-by-step explanation:
We have that
point C and point D have y = 0-----------> (the bottom of the trapezoid).
point A and point B have y = 4e ---------- > (the top of the trapezoid)
the y component of midpoint would be halfway between these lines
y = (4e+ 0)/2 = 2e.
<span>the x component of the midpoint of the midsegment would be halfway between the midpoint of AB and the midpoint of CD.
x component of midpoint of AB is (4d + 4f)/2.
x component of midpoint of CD is (4g + 0)/2 = 4g/2.
x component of a point between the two we just found is
[(4d + 4f)/2 + 4g/2]/2 = [(4d + 4f + 4g)/2]/2 = (4d + 4f + 4g)/4 = d + f + g.
</span>therefore
the midpoint of the midsegment is (d + f + g, 2e)
<u>Answer:</u>
,
,
, 
<u>Step-by-step explanation:</u>

First, we subtract 128 from both sides:

Then, we subtract
from both sides:

Rewrite the equation:

Insert and solve:

<em>Please give Brainliest</em>
Answer: 38 cm
Step-by-step explanation:
Answer: The correct option is
(D) {3, 10, 17, 24, …}.
Reasoning:
We are given to select the sequence that represents the following function with a domain of natural numbers :
The set of natural numbers is {1, 2, 3, 4, . . .}
to find the sequence, we need to substitute x = 1, 2, 3, 4, . . . in equation (i).
From equation (i), we get
Therefore, the sequence that represents the given function is {3, 10, 17, 24, …}.
Thus, option (D) is CORRECT.