Answer:
So sorry! Wish I could help : /
Step-by-step explanation:
Answer:
y= ab if a≠b
Step-by-step explanation:
y/a −b= y/b −a
multiply each side by ab to clear the fractions
ab(y/a −b) = ab( y/b −a)
distribute
ab * y/a - ab*b = ab * y/b - ab *a
b*y - ab^2 = ay -a^2 b
subtract ay on each side
by -ay -ab^2 = ay-ay -a^2b
by -ay -ab^2 =-a^2b
add ab^2 to each side
by-ay -ab^2 +ab^2 = ab^2 - a^2b
by-ay = ab^2 - a^2b
factor out the y on the left, factor out an ab on the right
y (b-a) = ab(b-a)
divide by (b-a)
y (b-a) /(b-a)= ab(b-a)/(b-a) b-a ≠0 or b≠a
y = ab
Answer:
Goodness of fit
Step-by-step explanation:
Given
The theoretical probabilities
<em>See comment for complete question</em>
<em></em>
Required
The type of test to be use
From the question, we understand that you are to test if the die is loaded or not using the given theoretical probabilities.
This test can be carried out using goodness of fit test because the goodness of fit is basically used to check the possibility of getting the outcome variable from a distribution. In this case, the outcome of the variables are the given theoretical probabilities.
In a nutshell, the goodness fit of test determines if the given data (in this case, the theoretical probabilities) is a reflection of what to expect in the original population.