Answer:
The detector temperature doesn't affect retention time
Explanation:
Retention time is one of the chromatographic parameters. Is defined as the time of a compound spends from injection to detection.
A solute in GC is added to the injector where is volatilized. When volatilized, it pass through a column until the detector.
The detector temperature doesn't affect retention time. To change retention time you must change injector temperature or column temperature. An increase in column or injector temperature results in a decrease in retention time.
Answer:
A. "The electric force vector is along the direction of the electric field, whereas the magnetic force vector is perpendicular to the magnetic field."
D. "The kinetic energy of a charged particle moving in an electric field is not altered, whereas the kinetic energy of a charged particle moving in a magnetic field is either increased or decreased, depending on the direction of motion."
Explanation:
Electric fields originate from voltage differences, the higher the voltage, the stronger the resulting field. Magnetic fields originate from electric currents, a stronger current results in a stronger field. An electric field exists even if there is no current. When there is current, the magnitude of the magnetic field will change with power consumption, but the strength of the electric field will remain the same.
The answer to this question would be the least number (right most number).
If you add an even number with even number, the result should be even. But if there is just one odd number added, it will be odd.
In binary, all the number is multiplied by

. It is pretty clear that all the number should be even beside the first/lowest multiplier

which has potential to be 1.
Answer:
An unbalanced force can change an object's motion. An unbalanced force acting on a still object could make the object start moving. An unbalanced force acting on a moving object could make the object change direction, change speed, or stop moving.
Answer:
Explanation:
18 km / h
= 300 m / min
12 km / h = 200 m / min
distance travelled in 200 minutes = 300 x 200 = 60000 m
distance travelled in 50 minute in return journey = 200 x 50 = 10000 m
total distance travelled = 70000 m
total time = 250 minute
speed = 70000 / 250
= 280 m / min
= 16.8 km / h
Total displacement = 60000 - 10000 = 50000 m
total time = 250 min
velocity = 50000 / 250
= 200 m / min
= 12 km / h