These stars fuse helium into carbon just like the sun.
I'm actually going ahead in the book (DC Circuits) so this isn't really homework but I figured the tag was appropriate....the name of the chapter is Ohm's Law and Watt's Law.
<span>Problem: Calculate the power dissipated in the load resistor, R, for each of the circuits.Circuit (a): V = 10V; I = 100mA; R = ?; Since I know
V and
I use formula
P = IV: P = IV = (100mA)(10V) = 1 W.</span>
The next question is what I'm not sure about:
Question: What is the power in the circuit (a) above if the voltage is doubled? (Hint: Consider the effect on current).
What I did initially was: P = IV = (100mA)(2V) = 2 W
But then I looked at the answer and it said 4 W, then I looked at the Hint again. Then I remembered in the book early on it said "If the voltage increases across a resistor, current will increase."
So question is: When solving problems I have to increase (or decrease) current (I) every time voltage (V) is increased (decreased) in a problem, right? How about the other way around, when increasing current (I), you need to increase voltage (V). I'm pretty sure that's how they got 4 W, but want to make sure before I head to the next section of the book.
P = IV = (200mA)(2V) = 4 W
Perfectly inelastic collision is type of collision during which two objects collide, stay connected and momentum is conserved. Formula used for conservation of momentum is:

In case of perfectly inelastic collision v'1 and v'2 are same.
We have following information:
m₁=3 kg
m₂=? kg
v₁=x m/s
v₂=0 m/s
v'1 = v'2 = 1/3 * v₁
Now we insert given information and solve for m₂:
3*v₁ + 0*? = 3*1/3*v₁ + m₂*1/3*v₁
3v₁ = v₁ + m₂*1/3*v₁
2v₁ = m₂*1/3*v₁
2 = m₂*1/3
m₂= 6kg
Mass of second mud ball is 6kg.
According to the Work-Energy Theorem, the work done on an object is equal to the change in the kinetic energy of the object:

Since the car ends with a kinetic energy of 0J (because it stops), then the work needed to stop the car is equal to the initial kinetic energy of the car:

Replace m=1100kg and v=112km/h. Write the speed in m/s. Remember that 1m/s = 3.6km/h:

Therefore, the answer is: 532,346 J.