By the work-energy theorem, the total work done on the car is equal to the change in its kinetic energy:
<em>W</em> = ∆<em>K</em>
<em>W</em> = 1/2 (0.34 kg) (22.9 m/s)² - 1/2 (0.34 kg) (6.5 m/s)²
<em>W</em> ≈ 82 J
Answer:
The kinetic energy of the baseball is 306.25 joules.
Explanation:
SInce the baseball can be considered a particle, that is, that effects from geometry can be neglected, the kinetic energy (
), in joules, is entirely translational, whose formula is:
(1)
Where:
- Mass, in kilograms.
- Speed, in meters per second.
If we know that
and
, then the kinetic energy of the baseball thrown by the player is:


The kinetic energy of the baseball is 306.25 joules.
600,000
PLEASE MARK AS BRAINLIEST ANSWER
The answer is C, A CD-ROM is a compact disk that contains stored
information that can be read on a computer. which can be used and store
for a long time. A CD-ROM store data in digital format. data is written
from a laser light on the disk. Minimum capacity this drive is around
700 MB.
The time required by the car to stop is 4.916 sec.
Since the car is moving with the constant deceleration we can apply the first equation of motion to calculate the time required by the car to stop.
The first equation of motion is given as
V=u+at
Here, V=final speed of the car=0 mi/h as the car stops
u =initial speed of the car=55 mi/hr=24.58 m/s
a= acceleartion =-5 m/s^2 (here negative sign indicates for deceleration)
Now applying the values in the first equation
V=u+at
0=24.58-5*t
t=4.916 sec
Therefore the car will stops in 4.916 sec.