Answer:
13.4g
Explanation:
we know that:
1 mole = 6.02 × 10²³ atoms
make the unknown number of moles = x
x = 7.1 × 10²² atoms
putting them both together:
1 mole = 6.02 × 10²³ atoms
x = 7.1 × 10²² atoms
Cross multiply:
6.02 × 10²³ x = 7.1 × 10²²
divide both sides by 6.02 × 10²³


we now have the number of moles of Al₂CO₃
to calculate the grams (mass):


add up all of the atomic masses of Al₂CO₃ to calculate relative formula mass:
(27 × 2) + 12 + (16 × 3) = 114
the grams (mass) of Al₂CO₃:

This is a
redox reaction where oxidation and a reduction occur.
<span>Here, Mg goes to Mg²</span>⁺ <span>by changing
its oxidation
number from 0 to +2 while S goes
to S²</span>⁻ <span>by reducing its oxidation
state from 0 to -2 .
Hence Mg is
oxidized by S in the
reaction.</span>
Reducing agent <span>is a substance which reduces other
substance by oxidizing itself. Hence, the reducing
agent of this reaction
is <span>Magnesium.</span></span>
Answer:
A. There were new technologies and new innovations to drive the sale of goods, since people could afford them
Explanation:
Answer:
The molarity of the solution is 1,03 M.
Explanation:
Molarity is a concentration measure that expresses the moles of solute (in this case HBR) in 1 liter of solution (1000ml). First we calculate the mass of 1 mol of HBr, to calculate the moles that are in 50 g of said compound:
Weight 1 mol HBr= Weight H + Weight Br= 1,01g + 79,90g= 80, 91 g/mol
80,91 g ----1 mol HBr
50,0 g------x= (50,0 g x1 mol HBr)/80,91 g= 0,62 mol HBr
600 ml solution-----0,62 mol HBr
1000ml solution------x= (1000ml solution x 0,62 mol HBr)/600 ml solution
<em>x=1,03 moles HBr ---> The solution is 1,03M</em>