Answer:
686.43363984 is the answer when 7.8 moles is converted.
B) chemical bond i believe is the correct answer
Answer
pH=8.5414
Procedure
The Henderson–Hasselbalch equation relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, Kₐ. In this equation, [HA] and [A⁻] refer to the equilibrium concentrations of the conjugate acid-base pair used to create the buffer solution.
pH = pKa + log₁₀ ([A⁻] / [HA])
Where
pH = acidity of a buffer solution
pKa = negative logarithm of Ka
Ka =acid disassociation constant
[HA]= concentration of an acid
[A⁻]= concentration of conjugate base
First, calculate the pKa
pKa=-log₁₀(Ka)= 8.6383
Then use the equation to get the pH (in this case the acid is HBrO)
I think <span>500 m but i just think i dont know </span>
Answer:
m = 700 g
Explanation:
Density:
Density is equal to the mass of substance divided by its volume.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Symbol:
The symbol used for density is called rho. It is represented by ρ. However letter D can also be used to represent the density.
Given data:
Density of octane = 0.700 g/cm³
Volume = 1 L
Mass = ?
Formula:
D=m/v
D= density
m=mass
V=volume
First of all we will convert the volume in cm³ because density is given in g/cm³ unit.
1 L = 1000 cm³
Now we will put the values in formula:
d= m/v
m = v × d
m = 1000 cm³ × 0.700 g/cm³
m = 700 g