Concentration of a solution can be expressed in terms of molarity and molality
Molarity is the number of moles of solute in a liter of a solution.
Molarity (M) = Moles of solute/Volume(litres) of solution
Molality is the number of moles of solute in one kg of the solution
Molality (m) = Moles of solute/Mass (kg) of solution
Therefore if the volume or the mass of the solution is changed this would affect the concentration.
In addition, volume is a quantity which depends on temperature. However, mass is independent of temperature. Therefore any changes in temperature, can also bring about a change in the molarity of the solution.
Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH.
Exponentiate both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × 10−8 M.
Use pv=nrT
where p is the pressure,
v is the volume,
n is the number of mole (which can be equal to mass /mr),
T is the temperature in kelvin,
and r is (molar constant) = 8.31 (units)
The Law of Conservation of Matter states that matter cannot be created or destroyed. The carbon cycle is an example of the Law because the same carbon atoms are being recycled through the carbon cycle. ... Carbon is used for energy, and some is stored for growth.
Answer:
C₅ H₁₂ O
Explanation:
44 g of CO₂ contains 12 g of C
30.2 g of CO₂ will contain 12 x 30.2 / 44 = 8.236 g of C .
18 g of H₂O contains 2 g of hydrogen
14.8 g of H₂0 will contain 1.644 g of H .
total compound = 12.1 out of which 8.236 g is C and 1.644 g is H , rest will be O
gram of O = 2.22
moles of C, O, H in the given compound = 8.236 / 12 , 2.22 / 16 , 1.644 / 1
= .6863 , .13875 , 1.644
ratio of their moles = 4.946 : 1 : 11.84
rounding off to digits
ratio = 5 : 1 : 12
empirical formula = C₅ H₁₂ O