Answer:
the height of the rock 3.2 seconds after it is propelled
Step-by-step explanation:
<u><em>The complete question is</em></u>
The function h(t) = –16t2 + 28t + 500 represents the height of a rock t seconds after it is propelled by a slingshot
Let
t------> the time in seconds
h----> the the height of a rock after it is propelled by a slingshot in meters
we know that

For 
Find the value of h(t)

therefore
h(3.2) represent the height of the rock
seconds after it is propelled
see the attached figure to better understand the problem
Answer:
a-it would cause too much of a tax increase
Answer:
the answer is 102
Step-by-step explanation:
hope this helps
Answer:
\sqrt{6}
Explanation:
From the given diagram,
Hypotenuse sde = x
Opposite side = \sqrt{3}
Using the SOH CAH TOA identity
Sintheta = opposite/hypotenuse
Sin 45 = \sqrt{3}/x
x = \sqrt{3}/sin45
![\begin{gathered} x\text{ =}\frac{\sqrt[]{3}}{\sin 45} \\ x\text{ = }\frac{\sqrt[]{3}}{\frac{1}{\sqrt[]{2}}} \\ x\text{ = }\sqrt[]{3^{}}\cdot\sqrt[]{2} \\ x\text{ =}\sqrt[]{6} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%5Ctext%7B%20%3D%7D%5Cfrac%7B%5Csqrt%5B%5D%7B3%7D%7D%7B%5Csin%2045%7D%20%5C%5C%20x%5Ctext%7B%20%3D%20%7D%5Cfrac%7B%5Csqrt%5B%5D%7B3%7D%7D%7B%5Cfrac%7B1%7D%7B%5Csqrt%5B%5D%7B2%7D%7D%7D%20%5C%5C%20x%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B3%5E%7B%7D%7D%5Ccdot%5Csqrt%5B%5D%7B2%7D%20%5C%5C%20x%5Ctext%7B%20%3D%7D%5Csqrt%5B%5D%7B6%7D%20%5Cend%7Bgathered%7D)
Hence the value of x is \sqrt{6}
The answer is a.
4 P 4 = 24