Mohamed decided to track the number of leaves on the tree in his backyard each year. the first year, there were 500 leaves. each year thereafter, the number of leaves was 40% more than the year before. let f(n) be the number of leaves on the tree in Mohamed's backyard in the n^th year since he started tracking it. f is a sequence. what kind of sequence is it?
Number of leaves on the tree in first year = 500
The number of leaves was 40% more than the year before.
So rate of increase is 40/100 = 0.4
We use exponential growth formula,
f(n) = a(1+r)^n
Where a is the initial number, r is the rate of growth, n is the number of years
We know a= 500, r= 0.4
f(n) = 500(1+0.4)^n
f(n) = 500(1.4)^n
Plug in n=1,2,3...
f(1) = 500
f(2) = 500 * 1.4^1
f(3) = 500 * 1.4^2 and so on
From this we can see that the common ratio is 1.4
Hence it is a Geometric sequence.
Answer: A. profit of $4500
<u>Step-by-step explanation:</u>
r(x) = x² + 6x + 10
- <u>c(x) = x² - 4x + 5</u>
(r - c)(x) = 10x + 5
(r - c)(4) = 10(4) + 5
= 40 + 5
= 45
(r - c)(x) represents the profit (in hundreds of dollars) in x months
(r - c)(4) represents the profit (in hundreds of dollars) in 4 months
So, the new store will have a profit of $4500 in 4 months
The answer is x1= 0, x2= 6
13500 m in 250 s
s is the second rate
deomenator is bottom number in a/b, denomenator is b
13500m/250s
use clculator or something to divide or use head
54m/s
answer is A