1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LiRa [457]
3 years ago
9

Enter the correct answer in the box. Write the factored form of the least common denominator needed to simplify this expression.

(g+1/g^2 + 2g - 15)+ (g+3/g+5)
Mathematics
1 answer:
Dennis_Churaev [7]3 years ago
8 0

Answer:

(g+5)x(g-3)

Step-by-step explanation:

Edmentum/PLATO answer:

Rewrite the expression:

g+1/g^2+5g-3g-15 + g+3/g+5

Factor out g from expression:

g+1/gx(g+5)-3g-15 + g+3/g+5

Factor out g+5:

g+1/(g+5)x(g-3) + g+3/g+5

Least common denominator: (g+5)x(g-3)

You might be interested in
A man is building a gazebo and plans to use for the floor two boards that are 8 and three fourths feet ​, four boards that are 1
MakcuM [25]

Answer:

The total number of feet in all the boards is 90 and 5/6 feet

Step-by-step explanation:

First, it is necessary to transform the mixed number into a fraction. This can be made following the next rule:

a\frac{b}{c} = \frac{(a*c) + b}{c}

So, the number 8 and three fourth feet is equal to:

8\frac{3}{4} = \frac{(8*4) + 3}{4} = \frac{35}{3}

That means that we two boards that are 35/3 feet. So, multiplying 2 by 35/3 we get the total feets for the first type of board. That is:

2*\frac{35}{3} = \frac{2*35}{3} =\frac{70}{3}

At the same way, we can calculate the total number of feet for the second and third type of board as:

  • Four boards that are 13 and five eighths feet:

13\frac{5}{8} = \frac{(13*8) + 5}{8} = \frac{109}{8}

4*\frac{109}{8} = \frac{4*109}{8} =\frac{109}{2}

  • Two boards that are 6 one half feet:

6\frac{1}{2} = \frac{(6*2) + 1}{2} = \frac{13}{2}

2*\frac{13}{2} = \frac{2*13}{2} =13

Finally, to find the total number of feet in all the boards, we need to sum the total number of feet for every type as:

\frac{70}{3} +\frac{109}{2} +\frac{13}{1} =\frac{545}{6}

Converting this number to a mixed number we get:

\frac{545}{6} =90\frac{5}{6}

Because, when we divide 545 by 6, we get 90 as a quotient, 5 is the remainder and 6 is the divisor.

3 0
3 years ago
A survey of 2380 golfers showed that 366 of them are left-handed. Find a point estimate for p, the population proportion of golf
cluponka [151]

Answer:

The point estimate is 366/2380

Step-by-step explanation:

Here. we want to find a point estimate for the number of golfers that are left-handed

To get this, we simply divide the number of left-handed golfers by the number of golfers surveyed

Mathematically, this will be 366/2380

8 0
2 years ago
What number times itself is 1,225?
Marrrta [24]

Answer:

35

Step-by-step explanation:

Multiply 35 x 35 together

Please mark brainliest

7 0
3 years ago
Read 2 more answers
Find the values of x and y.
sweet [91]
X is 90°
A triangles angles add up to 180° so
180 - 47 - 90 = y
180 - 137 = y
y = 43°
6 0
3 years ago
Read 2 more answers
Una heladeria dispone de 20 frutas distintas para elaborar sus malteadas. Si los clientes pueden elegir tres sabores para mezcla
Dahasolnce [82]

Answer:

Existen 6840 permitaciones de malteadas de tres sabores distintos que la heladería puede ofrecer.

Step-by-step explanation:

En este caso, el cliente que adquiere una malteada de tres sabores distintos sigue el siguiente procedimiento:

1) El primer sabor sale de cualquiera de las 20 frutas disponibles.

2) El segundo sabor es distinto al primer sabor, es decir, que sale de las 19 frutas restantes.

3) El tercer sabor es distinto al primer sabor y al segundo sabor, es decir, que sale de las 18 frutas restantes.

Puesto que existe una doble conjunción y que puede importar el orden según la preferencia del cliente, se habla matemáticamente de una permutación, definida como:

n\mathbb{P}k = \frac{n!}{(n-k)!} (1)

Donde:

n - Número de sabores disponibles, adimensional.

k - Número de sabores escogidos, adimensional.

Si tenemos que n = 20 y k = 3, entonces la cantidad de malteadas de tres sabores distintos es:

n\mathbb{P}k = \frac{20!}{(20-3)!}

n\mathbb{P}k = \frac{20!}{17!}

n\mathbb{P}k = 20\cdot 19\cdot 18

n\mathbb{P}k = 6840

Existen 6840 permitaciones de malteadas de tres sabores distintos que la heladería puede ofrecer.

5 0
3 years ago
Other questions:
  • What is 9 divided by 4,039?
    5·1 answer
  • What is the area of the sector bound by the center of the circle and in the circle below? (1 point). . . Select one:. a. 9.42 ft
    7·1 answer
  • If each interior angle of a regular polygon measures 168 how many sides does the polygon have
    11·1 answer
  • The quotient of a numder and -5 is 6. what is the number? <br><br>​
    6·2 answers
  • An employee at plant a receives a salary of $350 per week and a 2.9% bonus on the production sales for the week.if the sales for
    8·1 answer
  • HELP ASAP GIVING OUT BRAINLIEST!!!
    7·1 answer
  • Calculate the area of each shape below. Figures are not drawn to scale.
    6·2 answers
  • Find the greatest common factor of 15w2 and 25w3.
    11·2 answers
  • Uma wants to buy a video game system for $270. She has $60 and is saving $30 each week. Solve the equation 30w + 60 = 270 to fin
    9·2 answers
  • How do I solve 2x^2-32=0 using the square root method?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!