<span>Submarines are equipped with water tanks called ballast tanks that fill up to submerge the vessel. Emptying the tanks and filling them with air causes the submarine to surface.</span>
The ratio of the kinetic energy of the block/bullet system immediately after the collision to the initial kinetic energy of the bullet is 0.78 %.
<h3>Final velocity of the block/bullet system</h3>
Apply the principle of conservation of energy to determine the final velocity of the block/bullet system.
K.E = P.E
¹/₂mv² = mgh
¹/₂v² = gh
v² = 2gh
v = √2gh
where;
- h is the maximum height reached by the system
- v is the initial velocity of the system
v = √(2 x 9.8 x 1.1)
v = 4.64 m/s
<h3>Initial velocity of the bullet</h3>
Apply the principle of conservation of linear momentum.
m₁u₁ + m₂u₂ = v(m₁ + m₂)
where;
- u₁ is the initial velocity of the bullet
- u₂ is the initial velocity of the block
- v is the final velocity after collision
- m₁ is mass bullet
- m₂ is mass of block
(0.0075)u₁ + (0.95)(0) = 4.64(0.0075 + 0.95)
0.0075u₁ = 4.4428
u₁ = 4.4428/0.0075
u₁ = 592.37 m/s
<h3>Initial kinetic energy of the bullet</h3>
K.Ei = ¹/₂m₁u₁²
K.Ei = ¹/₂(0.0075)(592.37)²
K.Ei = 1,315.88 J
<h3>Final kinetic energy of the block/bullet system</h3>
K.Ef = ¹/₂(m₁ + m₂)v²
K.Ef = ¹/₂(0.0075 + 0.95)(4.64)²
K.Ef = 10.31 J
<h3>Ratio of final kinetic energy to initial kinetic energy</h3>
= K.Ef/K.Ei x 100%
= (10.31 / 1,315.88) x 100%
= 0.78 %
Learn more about kinetic energy here: brainly.com/question/25959744
#SPJ1
Answer:
6
Explanation
Any numbers in scientific notation are considered significant. For example, 4.300 x 10-4 has 4 significant figures.
Answer From Gauth Math
Answer:
Part a)
When there is no friction then acceleration is

Part b)
if there is friction force along the inclined then acceleration is

Explanation:
Part a)
As we know that the skier is on inclined plane
So here if there is no friction then net force along the inclined plane is given as

now acceleration of the skier is given as




Part b)
if there is friction force along the inclined then net force along the inclined plane is given as

now acceleration of the skier is given as



