Answer:
ω₂=1.20
Explanation:
Given that
mass of the turn table ,M= 15 kg
mass of the ice ,m= 9 kg
radius ,r= 25 cm
Initial angular speed ,ω₁ = 0.75 rad/s
Initial mass moment of inertia



Final mass moment of inertia



Lets take final speed of the turn table after ice evaporated =ω₂ rad/s
Now by conservation angular momentum
I₁ ω₁ =ω₂ I₂

ω₂=1.20
Answer:
The acceleration of the ball is 4.18 [m/s^2]
Explanation:
By Newton's second law we can find the acceleration of the ball
![F = m*a\\where:\\F = force applied [N] or [kg*m/s^2]\\m = mass of the ball [kg]\\a = acceleration [m/s^s]](https://tex.z-dn.net/?f=F%20%3D%20m%2Aa%5C%5Cwhere%3A%5C%5CF%20%3D%20force%20applied%20%5BN%5D%20or%20%5Bkg%2Am%2Fs%5E2%5D%5C%5Cm%20%3D%20mass%20of%20the%20ball%20%5Bkg%5D%5C%5Ca%20%3D%20acceleration%20%5Bm%2Fs%5Es%5D)
Now we have:
![a = F/m\\a = \frac{1.8 [kg*m/s^s]}{0.43[kg]} \\a = 4.18 [kg]](https://tex.z-dn.net/?f=a%20%3D%20F%2Fm%5C%5Ca%20%3D%20%5Cfrac%7B1.8%20%5Bkg%2Am%2Fs%5Es%5D%7D%7B0.43%5Bkg%5D%7D%20%5C%5Ca%20%3D%204.18%20%5Bkg%5D)
Answer: Accoding to research "Triton is unique among all the large moons in the solar system because it orbits Neptune in a direction opposite to the planet's rotation (a "retrograde" orbit). It is unlikely to have formed in this configuration and was probably captured from elsewhere."
Explanation:
Answer:
a = 3 m/s^2
Explanation:
Vi = 10 m/s
Vf = 40 m/s
t = 10 s
Plug those values into the following equation:
Vf = Vi + at
40 = 10 + 10a
---> a = 3 m/s^2