Answer:
True
Explanation:
Atomic radius can be defined as a measure of the size (distance) of the atom of a chemical element such as hydrogen, oxygen, carbon, nitrogen etc, typically from the nucleus to the valence electrons. The atomic radius of a chemical element decreases across the periodic table, typically from alkali metals (group one elements such as hydrogen, lithium and sodium) to noble gases (group eight elements such as argon, helium and neon). Also, the atomic radius of a chemical element increases down each group of the periodic table, typically from top to bottom (column).
<em>Hence, the atomic radius of phosphorus is smaller than the atomic radius of magnesium. Basically, the atomic radius of phosphorus is 98 pm while the atomic radius of magnesium is 145 pm.</em>
Osmosis is the passage of water molecules through a semi-permeable membrane from a solution of ___lower_____ concentration to ___higher_____ concentration.
Answer:
( a ) Filtration
( b ) sugar refining .
Explanation:
( a ) Filtration
By the process of filtration pasta from water can be removed , as pasta is not soluble in water , hence , by filtration , the solid pasta will remain in the filtration funnel , and the water will flow down , thereby , removing pasta from the water .
( b ) sugar refining
The raw sugar can be purified from the process of sugar refining .
1) is chemical Bonds
3) Conservation of mass
5) compound
hope i helped on the ones i could answer
Answer: Option (c) is the correct answer.
Explanation:
A limiting reagent is defined as a reagent that completely gets consumed in a chemical reaction. A limiting reagent limits the formation of products.
For example, we have given 5 mol of A and the reaction is 
Whereas when 4 mol B will react with 2 mol of A. Hence, 8 mol of B will react with 4 mol A as follows.
= 4 mol
As, the given moles of A is more than the required moles. Thus, it is considered as an excess reagent.
Hence, B is a limiting reagent because it limits the formation of products.
Thus, we can conclude that limiting reactant is the term used to describe the reactant that is used up completely and controls the amount of product that can be produced during a chemical reaction.