Answer:
Option (1) Br– is the catalyst, and the reaction follows a faster pathway with Br– than without
Explanation:
Let us consider the equation below:
Step 1:
H2O2(aq) + Br–(aq) → H2O(l) + BrO–(aq)
Step 2:
BrO–(aq) + H2O2(aq) → H2O(l) + O2(g) + Br–(aq)
From the above equation, we can see that Br– is unchanged.
This implies that Br– is the catalyst as catalyst does not take part in a chemical reaction but they create an alternate pathway to lower the activation energy in order for the reaction to proceed at a much faster rate to arrive at the products.
The empirical formula for a compound is KClO3
Explanation
find the moles of each element
moles = % composition/molar mass
molar mass of of potassium =39g/mol ,chlorine = 35.5 g/mol, oxygen =16 g/mol
moles of potassium = 31.9 / 39 = 0.818 moles
moles of chlorine = 28.9/35.5 = 0.814 moles
moles of oxygen = 39.2/ 16 = 2.45 moles
find the mole ratio by dividing with the smallest mole = 0.814 moles
potassium = 0.818/0.814 =1
chlorine = 0.814/0.814 = 1
oxygen = 2.45 /0.814 =3
the empirical formula is therefore = KClO3
<u>Answer:</u> The molality of
solution is 0.782 m
<u>Explanation:</u>
Molality is defined as the amount of solute expressed in the number of moles present per kilogram of solvent. The units of molarity are mol/kg. The formula used to calculate molality:
.....(1)
Given values:
Moles of
= 0.395 mol
Mass of solvent (water) = 0.505 kg
Putting values in equation 1, we get:

Hence, the molality of
solution is 0.782 m
A condensation reaction is described to be a reaction wherein two molecules form an even larger product and consequently produces a smaller molecule as a by-product. For example, when two amino acids are combined, a dipeptide bond is formed. As a result, 1 molecule of water is produced as a by-product.