Answer:
? is 24
Step-by-step explanation:
 
        
                    
             
        
        
        
Answer:
m = undefined
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Coordinates (x, y)
- Parallel lines have the same slope but different y-intercepts
- An undefined line is a vertical line
- Slope Formula:  
Step-by-step explanation:
<u>Step 1: Define</u>
Point (3, 2)
Point (3, 1)
<u>Step 2: Find slope </u><em><u>m</u></em>
Simply plug in the 2 coordinates into the slope formula to find slope <em>m</em>
- Substitute in points [Slope Formula]:                                                             
- [Fraction] Subtract:                                                                                          
- Simplify:                                                                                                          m = undefined
 
        
             
        
        
        
Answer:
a right
Step-by-step explanation:
 
        
             
        
        
        
Answer:
≥                                         closed dot
<                                           open dot
 ≤     less than or equal to   closed dot
There are the missing blanks
 
        
             
        
        
        
Answer:
Step-by-step explanation:
From the given information,
Suppose
X represents the Desktop computer
Y represents the DVD Player
Z represents the Two Cars
Given that:
n(X)=275
n(Y)=455
n(Z)=405
n(XUY)=145
n(YUZ)=195
n(XUZ)=110
n((XUYUZ))=265
n(X ∩ Y ∩ Z) = 1000-265 
n(X ∩ Y ∩ Z) = 735
n(X ∪ Y) = n(X)+n(Y)−n(X ∩ Y)
145 = 275+455 - n(X ∩ Y)
n(X ∩ Y) = 585
n(Y ∪ Z) = n(Y) + n(Z) − n(Y ∩ Z)
195 = 455+405-n(Y ∩ Z)
n(Y ∩ Z) = 665
n(X ∪ Z) = n(X) + n(Z) − n(X ∩ Z)
110 = 275+405-n(X ∩ Z)
n(X ∩ Z) = 570
a. n(X ∪ Y ∪ Z) = n(X) + n(Y) + n(Z) − n(X ∩ Y) − n(Y ∩ Z) − n(X ∩ Z) + n(X ∩ Y ∩ Z)
n(X ∪ Y ∪ Z) = 275+455+405-585-665-570+735
n(X ∪ Y ∪ Z) = 50
c. n(X ∪ Y ∪ C') = n(X ∪ Y)-n(X ∪ Y ∪ Z)
n(X ∪ Y ∪ C') = 145-50
n(X ∪ Y ∪ C') = 95