Answer:
Check below, please
Step-by-step explanation:
Step-by-step explanation:
1.For which values of x is f '(x) zero? (Enter your answers as a comma-separated list.)
When the derivative of a function is equal to zero, then it occurs when we have either a local minimum or a local maximum point. So for our x-coordinates we can say

2. For which values of x is f '(x) positive?
Whenever we have

then function is increasing. Since if we could start tracing tangent lines over that graph, those tangent lines would point up.

3. For which values of x is f '(x) negative?
On the other hand, every time the function is decreasing its derivative would be negative. The opposite case of the previous explanation. So

4.What do these values mean?

5.(b) For which values of x is f ''(x) zero?
In its inflection points, i.e. when the concavity of the curve changes. Since the function was not provided. There's no way to be precise, but roughly
at x=-4 and x=4
We can use quadratic formula to determine the roots of the given quadratic equation.
The quadratic formula is:

b = coefficient of x term = -11
a = coefficient of squared term = 2
c = constant term = 15
Using the values, we get:
So, the correct answer to this question are option B and D
Answer: I think it's D
Step-by-step explanation:
Answer:
c=-2
Step-by-step explanation:
Answer:
110%
Step-by-step explanation:
just divide by 2
20/2 = 10
22/2 = 11
so x% of 10 = 11
1.10 just like the last problem
110%