By understanding and applying the characteristics of <em>piecewise</em> functions, the results are listed below:
- r (- 3) = 15
- r (- 1) = 11
- r (1) = - 7
- r (5) = 13
<h3>How to evaluate a piecewise function at given values</h3>
In this question we have a <em>piecewise</em> function formed by three expressions associated with three respective intervals. We need to evaluate the expression at a value of the <em>respective</em> interval:
<h3>r(- 3): </h3>
-3 ∈ (- ∞, -1]
r(- 3) = - 2 · (- 3) + 9
r (- 3) = 15
<h3>r(- 1):</h3>
-1 ∈ (- ∞, -1]
r(- 1) = - 2 · (- 1) + 9
r (- 1) = 11
<h3>r(1):</h3>
1 ∈ (-1, 5)
r(1) = 2 · 1² - 4 · 1 - 5
r (1) = - 7
<h3>r(5):</h3>
5 ∈ [5, + ∞)
r(5) = 4 · 5 - 7
r (5) = 13
By understanding and applying the characteristics of <em>piecewise</em> functions, the results are listed below:
- r (- 3) = 15
- r (- 1) = 11
- r (1) = - 7
- r (5) = 13
To learn more on piecewise functions: brainly.com/question/12561612
#SPJ1
Part A:
We see that this pair of equations has 1 solution. On a graph, the solutions of 2 (or more) lines is where the lines intersect. In this case, since these lines intersect 1 time, they have 1 solution.
Part B:
As previously mentioned, the solutions of multiple lines is where the lines intersect. In this case, since they intersect at (4,4), that is the solution.
2 x 5/ 50 x 18
10 / 900
Divide both by 10
1/90
42 km/h is equal to 0.00724933 m/s
You get this by dividing the km/h speed value by 1.609 to get it to m/h, then divide that by 60, then by 60 again to get it to m/s.