<u>Answer:</u>
<h2>SA = 157 in²</h2>
<u>Steps:</u>
SA = 2LW + 2WH + 2LH
SA = 2(9×2) + 2(2×11/2) + 2(9×11/2)
SA = 2×18 + 2×22/2 + 2×99/2
SA = 36 + 22 + 99
SA = 157 in²
I think you should say you multipliyed?
Answer:
1.5 unit^2
Step-by-step explanation:
Solution:-
- A graphing utility was used to plot the following equations:
- The plot is given in the document attached.
- We are to determine the area bounded by the above function f ( x ) subjected boundary equations ( y = 0 , x = -1 , x = - 2 ).
- We will utilize the double integral formulations to determine the area bounded by f ( x ) and boundary equations.
We will first perform integration in the y-direction ( dy ) which has a lower bounded of ( a = y = 0 ) and an upper bound of the function ( b = f ( x ) ) itself. Next we will proceed by integrating with respect to ( dx ) with lower limit defined by the boundary equation ( c = x = -2 ) and upper bound ( d = x = - 1 ).
The double integration formulation can be written as:
Answer: 1.5 unit^2 is the amount of area bounded by the given curve f ( x ) and the boundary equations.
Answer:
B
Step-by-step explanation:
34x and 0.75x are not the same expression.