The first equation has no solution
The picture shows all the work I did, the reason I took a pic is because it is a little hard to explain by text, but I hope this helped you!
Answer:
<h2>
4.5</h2>
Step-by-step explanation:


Move constant to R.H.S and change its sign

Subtract the numbers

Divide both sides of the equation by 2

Calculate

Hope this helps..
Best regards!!
Can you please include a pic
A fraction is bigger than a negative number. This is because, a negative number is below zero, while a fraction is greater than zero.
Answer:
a) the probability that the minimum of the three is between 75 and 90 is 0.00072
b) the probability that the second smallest of the three is between 75 and 90 is 0.396
Step-by-step explanation:
Given that;
fx(x) = { 1/5 ; 50 < x < 100
0, otherwise}
Fx(x) = { x-50 / 50 ; 50 < x < 100
1 ; x > 100
a)
n = 3
F(1) (x) = nf(x) ( 1-F(x)^n-1
= 3 × 1/50 ( 1 - ((x-50)/50)²
= 3/50 (( 100 - x)/50)²
=3/50³ ( 100 - x)²
Therefore P ( 75 < (x) < 90) = ⁹⁰∫₇₅ 3/50³ ( 100 - x)² dx
= 3/50³ [ -2 (100 - x ]₇₅⁹⁰
= (3 ( -20 + 50)) / 50₃
= 9 / 12500 = 0.00072
b)
f(k) (x) = nf(x) ( ⁿ⁻¹_k₋ ₁) ( F(x) )^k-1 ; ( 1 - F(x) )^n-k
Now for n = 3, k = 2
f(2) (x) = 3f(x) × 2 × (x-50 / 50) ( 1 - (x-50 / 50))
= 6 × 1/50 × ( x-50 / 50) ( 100-x / 50)
= 6/50³ ( 150x - x² - 5000 )
therefore
P( 75 < x2 < 90 ) = 6/50³ ⁹⁰∫₇₅ ( 150x - x² - 5000 ) dx
= 99 / 250 = 0.396