This problem is going to be pretty long to solve. So, prepare.
We’re interested in the change in our x position. So we have to break the velocity vector up into its components. Do cosine of 50 and then multiply by the magnitude of the velocity. I got 20.57m/s. That’s our initial velocity. And remember, horizontal acceleration is zero. The vertical acceleration, or any vertical component, has no effect on the horizontal components. In order to solve this problem, we want to utilize this equation:
Change in x-position = Vix*t
Let’s solve for time, which is dependent on the vertical components. The projectile will stop when it vertically hits the ground. Generally you want to use this equation for solving for time:
Yf = Yi + Viy*t + 1/2at^2
We didn’t solve for the vertical component yet, so let’s do that now. (Sine of 50)*(32) = 24.51m/s
Let’s now plug everything in:
0 = 0 + 24.5t - 4.9t^2
0 = 24.5t - 4.9t^2
0 = t(24.5 - 4.9t)
-24.5 = -4.9t
t = 5 seconds
The hard stuff is pretty much over. Put that 5 seconds into the other equation I said we wanted to use to solve the problem
Change in x-position (range) = (20.57)*(5)
= 102.85 meters
Answer B
1. The correct answer is B. The nebular theory states that the solar system is the result of the collapse, for unknown reasons, of a large, thin cloud of dust and gas. After this collapse<span>, the pockets of gas and dust started gathering into denser regions. As these regions collected more and more matter, they started to rotate, which led to the accumulation of a big ball in the </span>center<span>, the Sun, and </span>flattenedmatter around, the protoplanetary disc. Then the planets got formed by the accretion of this disc, which eventually created the planets.
2. The correct answer is D. The terrestrial<span> planets were formed by </span>accretion<span> of material that was denser in its constitution. This is the reason why they remained closer to the sun - they were heavier than gas, that is the material the Jovian planets are mostly made of.</span><span />
Given that,
Time = 0.5 s
Acceleration = 10 m/s²
(I). We need to calculate the speed of apple
Using equation of motion

Where, v = speed
u = initial speed
a = acceleration
t = time
Put the value into the formula


(III). We need to calculate the height of the branch of the tree from the ground
Using equation of motion

Put the value into the formula


(II). We need to calculate the average velocity during 0.5 sec
Using formula of average velocity


Where,
= final position
= initial position
Put the value into the formula


Hence, (I). The speed of apple is 5 m/s.
(II). The average velocity during 0.5 sec is 2.5 m/s
(III). The height of the branch of the tree from the ground is 1.25 m.
If you're willing to consider fractions or decimals,
then there are an infinite number of answers.
Like (2.5 x 160), and (15 x 26-2/3).
If you want to stick to only whole numbers,
then these 8 combinations do:
1, 400
2, 200
4, 100
5, 80
8, 50
10, 40
16, 25
20, 20
An object that travels around another object in space, is called a Satellite.