So you have to first put put the equation in slope-intercept form.
-3x+4y=4
+3x +3x
_______________
4y=4+3x
then you divide 4 by 4 and then divide 3x by 4 and you should get y=1+3/4x
then you plug in x and only x so that you can find y and then do the same once you find y
y=1+ (4)3/4
y= 1+3
y=4
then plug in y and solve for x
4= 1+ 3/4x
subtract 1 from both sides
3=3/4x
divide both sides by 3/4
and x=4
so then you find b and put it all in a equation.
Answer:
1) 2x^4/343
2) 2x^6/225
3) 2x^12/25
4) 5x^20/16807
Step-by-step explanation:
Hope this helps!
Answer:
- The value of x is 12 units.
Step-by-step explanation:
<u>We know that:</u>
<u>Let's solve using Pythagoras theorem.</u>
- => 13² = 5² + x²
- => 169 = 25 + x²
- => 169 - 25 = x²
- => 144 = x²
- => √x² = √144
- => x = √144
- => x = 12
Hence, the value of x is 12 units.
The average rate of change of the function from x = 0 to x = 2 is -2
From the complete question (see attachment), we have the following ordered pair when x = 0 and x = 2

The average rate of change is calculated using:

So, we have:

Evaluate common terms

Divide -4 by 2

Hence, the average rate of change of the function from x = 0 to x = 2 is -2
Read more about rate of change at:
brainly.com/question/8728504
Answer:
52°
Step-by-step explanation:
<em>here's</em><em> </em><em>your</em><em> solution</em>
<em>=</em><em>></em><em> </em><em>we </em><em>know</em><em> </em><em>that</em><em> </em><em>the </em><em>measure</em><em> </em><em>of</em><em> </em><em>angle</em><em> of</em><em> </em><em>rectangle</em><em> </em><em>is </em><em> </em><em>9</em><em>0</em><em>°</em>
<em>=</em><em>></em><em> </em><em> </em><em>3</em><em>8</em><em>°</em><em> </em><em>+</em><em> </em><em>X </em><em> </em><em>=</em><em> </em><em>9</em><em>0</em><em>°</em>
<em>=</em><em>></em><em> </em><em>X </em><em>=</em><em> </em><em>9</em><em>0</em><em>°</em><em> </em><em>-</em><em> </em><em>3</em><em>8</em><em>°</em>
<em>=</em><em>></em><em> </em><em>X </em><em>=</em><em> </em><em>5</em><em>2</em><em>°</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>hope</em><em> it</em><em> helps</em>