Answer:
-x - 3y + z
Step-by-step explanation:
Think of a imaginary 1(-1 because of the sign) in front of the parenthesis and distribute it to the other number and so x will become -x, 3y will become -3y and -z will become z because two negatives make a positive.
First term: a(1) = 4; common ratio: r = 2
Then:
a(n) = 4(2)^(n-1)
Check: Predict the 4th term using this formula:
a(4) = 4(2)^3 = 4(8) = 32 (correct)
1. 4x - 8 + 2x + (-5x) + x^2 - 3 = 4x - 8 + 2x - 5x + x^2 - 3...now, we just combine like terms....lets group them...it will be easier ...x^2 + (4x + 2x - 5x ) - 8 - 3 = x^2 + x - 11
2. 2x + 5x = 8x
3. 2r + 4 + 3x - 2 = 3x + 2r + (4 - 2) = 3x + 2r + 2
4. 3x - 2y - x + 5y = (3x - x) + (5y - 2y) = 2x + 3y
5. 2y^2 - 8y^3 + 5y - 5y^2 + 4y^3 = (4y^3 - 8y^3) + (2y^2 - 5y^2) + 5y =
-4y^3 - 3y^2 + 5y
Answer: 1
Step-by-step explanation:
In order to find GCF, take the prime factorization of 3 and 13.
3: 1*3 ==> Prime factorization of 3
13: 1*13 ==> Prime factorization of 3
The common factor is 1.
GCF of 13 and 3 is 1
<h2><em>we can write (3x^2-5y^2) as (3x-5y)^2</em></h2><h2><em>(
3
x
−
5
y
)
2 as (
3
x−
5
y
)
(
3
x−
5
y
)</em></h2><h2><em>3
x
(
3
x
−
5
y
)
−
5
y
(
3x
−5
y
)</em></h2><h2><em>3
x
(
3
x
−
5
y
)
−
5
y
(3
x
−
5
y
)</em></h2><h2><em>3
x
(
3
x
)
+
3
x
(
−
5y
)
−
5
y
(
3
x
)
−
5
y(
-5
y
)</em></h2><h2><em>9
x
2
−
15
x
y
−
15y
x
+
25
y
2
</em></h2><h2><em> Subtract 15
y
x from −
15
x
y
.</em></h2><h2><em>9
x
2
−
30
xy
+
25
y
2</em></h2><h2><em> HOPE IT HELPS(◕‿◕✿) </em></h2><h2><em> SMILE!! </em></h2>