Answer:
yp = -x/8
Step-by-step explanation:
Given the differential equation: y′′−8y′=7x+1,
The solution of the DE will be the sum of the complementary solution (yc) and the particular integral (yp)
First we will calculate the complimentary solution by solving the homogenous part of the DE first i.e by equating the DE to zero and solving to have;
y′′−8y′=0
The auxiliary equation will give us;
m²-8m = 0
m(m-8) = 0
m = 0 and m-8 = 0
m1 = 0 and m2 = 8
Since the value of the roots are real and different, the complementary solution (yc) will give us
yc = Ae^m1x + Be^m2x
yc = Ae^0+Be^8x
yc = A+Be^8x
To get yp we will differentiate yc twice and substitute the answers into the original DE
yp = Ax+B (using the method of undetermined coefficients
y'p = A
y"p = 0
Substituting the differentials into the general DE to get the constants we have;
0-8A = 7x+1
Comparing coefficients
-8A = 1
A = -1/8
B = 0
yp = -1/8x+0
yp = -x/8 (particular integral)
y = yc+yp
y = A+Be^8x-x/8
H(t) = Ho +Vot - gt^2/2
Vo = 19.6 m/s
Ho = 58.8 m
g = 9.8 m/s^2
H(t) = 58.8 + 19.6t -9.8t^2/2 = 58.8 + 19.6t - 4.9t^2
Maximun height is at the vertex of the parabole
To find the vertex, first find the roots.
58.8 + 19.6t - 4.9t^2 = 0
Divide by 4.9
12 + 4t - t^2 = 0
Change sign and reorder
t^2 - 4t -12 = 0
Factor
(t - 6)(t + 2) =0 ==> t = 6 and t = -2.
The vertex is in the mid point between both roots
Find H(t) for: t = [6 - 2]/2 =4/2 = 2
Find H(t) for t = 2
H(6) = 58.8 + 19.6(2) - 4.9(2)^2 = 78.4
Answer: the maximum height is 78.4 m
Answer:

Step-by-step explanation:
Since interest is compounded semi-annually (half a year or 6 months), in a spawn of 2 years, the interest will have been compounded 4 times. As given in the problem, each time the interest is compounded, the new balance will be 107% or 1.07 times the amount of the old balance.
Therefore, we can set up the following equation to find the new balance after 2 years:

1. Let's check the problem backwards. So let's map A"B"C" to ABC
2. We first need to reflect A"B"C" to A"B"C' with A"B"" as the axis of rotation.
3. Then we shift a few units up (translation) A"B"C' to A'B'C
4. Finally we rotate A'B'C around C to map the triangle onto ABC
going backwards we get the answer: b
<span>b.rotation, then translation, then reflection</span>
I did that equation on the side and I got 442, I hope this helps