The answer is D. First, it is the segment addition postulate because the two segments make up the whole. Second, it's substitution because you are substituting EF + FG for FH.
Hope this helps!
Answer:
60 inches long are the sides of the pillars.
Step-by-step explanation:
Given : A small bridge sits atop four cube shaped pillars that all have the same volume. the combined volume of the four pillars is 500 ft cubed.
To find : How many inches long are the sides of the pillars?
Solution :
Refer the attached picture below for Clarence of question.
The volume of the cube is 
Where, a is the side.
The combined volume of the four pillars is 500 ft cubed.
The volume of each cube is given by,

Substitute in the formula to get the side,

![a=\sqrt[3]{125}](https://tex.z-dn.net/?f=a%3D%5Csqrt%5B3%5D%7B125%7D)

We know, 1 feet = 12 inches
So, 5 feet =
inches
Therefore, 60 inches long are the sides of the pillars.
Answer:
5=35
Step-by-step explanation:
Hello!
To find the maximum value of the function f(x) = -3(x - 10)(x - 4), the easiest way is to find the vertex using the formula: x = -b/2a.
Firstly, we need to simplify f(x).
f(x) = -3(x - 10)(x - 4)
f(x) = -3(x² - 14x + 40)
f(x) = -3x² + 42x + -120
Since the equation f(x) is now simplified to standard form, we can find the vertex.
a = -3, b = 42, and c = -120
x = -(42)/2(-3) = -42/-6 = 7
Then, we substitute 7 into the the function f(x) = -3(x - 10)(x - 4), or
f(x) = -3x² + 42x + -120, to find the y-value of the vertex.
f(x) = -3(7 - 10)(7 - 4)
f(x) = -3(-3)(4)
f(x) = 27
The vertex of f(x) is (7, 27).
Therefore, the maximum x-value for the function f(x) is 7.
There are a total of 208 cards. For every one card Tony has, Duane has 12, which means that there are 13 cards in each "set." If you divide the total number of cards (208) by 13, you get 16 "sets." So out of the total 208 cards, Tony has 16 cards and Duane has 12 times 16 or 192 cards.