Q = recessive allele frequency = 0.3, and thus in H-W equilibrium there are ONLY two alleles, q (recessive) and
p (dominant). Therefore all of the p and q present for this gene in a population must account for 100% of this gene's alleles. And 100% = 1.00.
So p, the dominant allele frequency, must be equal to 1 - q --> p = 1 - q
p = 1 - 0.3 = 0.7.
Since heterozygotes are a combination of the p and q, we must again look at the frequencies of each genotype: p + q = 1, then (p+q)^2 = 1^2
So multiplying out (p+q)(p+q) = 1, we get: p^2+2pq+q^2 = 1 (all genotypes), where p^2 = frequency of homozygous dominant individuals, 2pq = frequency of heterozygous individuals, and q^2 = frequency of homozygous recessive individuals.
Therefore if the population is in H-W equilibrium, then the expected frequency of heterozygous individuals = 2pq = 2(0.7)(0.3)
2pq = 2(0.21) = 0.42, or 42% of the population.
Hope that helps you to understand how to solve population genetics problems!
Answer:
O C. There is no photosynthesis.
Explanation:
Aphotic zone of a body of water refers to the part where almost no sunlight. With this condition of water, marine life is limited to species who does not light for survival. The aphotic area also is the basin of the dead organism that submerges from the photic part. Temperatures at these areas are also low
The correct answer among all of the given choices would be the third choice, CLOUDS.
I hope this is the answer you were looking for and that it helps!! :)
Answer:
Heterotroph. Autotrophs are organisms that can produce their own food from the substances available in their surroundings using light (photosynthesis) or chemical energy (chemosynthesis). Heterotrophs cannot synthesize their own food and rely on other organisms — both plants and animals — for nutrition.
Explanation:
Heterotroph. Autotrophs are organisms that can produce their own food from the substances available in their surroundings using light (photosynthesis) or chemical energy (chemosynthesis). Heterotrophs cannot synthesize their own food and rely on other organisms — both plants and animals — for nutrition.