Newton's Law of Cooling
Tf=Ts+(Ti-Ts)e^(-kt) where Tf is temp at time t, Ts is temp of surroundings, Ti is temp of object/fluid. So we need to find k first.
200=68+(210-68)e^(-10k)
132=142e^(-10k)
132/142=e^(-10k)
ln(132/142)=-10k
k=-ln(132/142)/10
k≈0.0073 so
T(t)=68+142e^(-0.0073t) so how long until it reaches 180°?
180=68+142e^(-0.0073t)
112=142e^(-0.0073t)
112/142=e^(-0.0073t)
ln(112/142)=-0.0073t
t= -ln(112/142)/(0.0073)
t≈32.51 minutes
Answer:
( -1, 15/2) or ( -1, 7 1/2)
Step-by-step explanation:
Formula: ( (x1 + x2)/2, (y1 + y2)/2 )
1. ( (-4 +6)/2, (8 + 7)/2 ) Plug in
2. ( -2/2, 15/2) Add/Subtract
3. ( -1, 15/2) or ( -1, 7 1/2) Divide
Answer:
![l= \frac{A}{2h} -w](https://tex.z-dn.net/?f=l%3D%20%5Cfrac%7BA%7D%7B2h%7D%20-w)
Step-by-step explanation:
The question is not correct (particularly the expression for the area)
A=2lh+2wh
Now we are expected to solve for l, that is we are going to make l subject of the formula, we have
let us take the second term on the RHS to the LHS
![A-2wh= 2lh](https://tex.z-dn.net/?f=A-2wh%3D%202lh)
we can now divide both sides by 2h we have
![\frac{A-2wh}{2h} = l\\\\l=\frac{A}{2h} -\frac{2wh}{2h} \\\\l= \frac{A}{2h} -w](https://tex.z-dn.net/?f=%5Cfrac%7BA-2wh%7D%7B2h%7D%20%3D%20l%5C%5C%5C%5Cl%3D%5Cfrac%7BA%7D%7B2h%7D%20-%5Cfrac%7B2wh%7D%7B2h%7D%20%5C%5C%5C%5Cl%3D%20%5Cfrac%7BA%7D%7B2h%7D%20-w)
hence the expression for the length is ![l= \frac{A}{2h} -w](https://tex.z-dn.net/?f=l%3D%20%5Cfrac%7BA%7D%7B2h%7D%20-w)