Answer:
Using temperature or a thermometer
Explanation:
Since AKE equals = temperature, you can find the temperature of a substance with a thermometer, which gives the temperature.
Answer:
The order is:
F >Be >Li >Ba
Explanation:
Electrons are held in atoms by their attraction to the nucleus which means that to remove an electron from the atom energy is needed.
The ionization energy is the minimum energy necessary to remove an electron from an atom in the gas phase and ground state, the electron removed being the outermost, that is, the furthest from the nucleus. The further away the electron is from the nucleus, the easier it is to remove it, that is, the less energy is needed.
By increasing the atomic number of the elements of the same group, the nuclear attraction on the outermost electron decreases, since the atomic radius increases. Then the ionization energy decreases. In other words, in a group it decreases from top to bottom because the size of the atom increases and it is easier to remove an external electron.
By increasing the atomic number of the elements of the same period, the nuclear attraction on the outermost electron increases, since the atomic radius decreases. Therefore, in a period, as the atomic number increases, the ionization energy increases. In summary, in a period it increases from left to right as the effective nuclear charge increases and it increases thanks to the decrease in the size of the atom.
Taking these considerations into account, the order is:
<u><em>F >Be >Li >Ba</em></u>
Answer:
See explanation
Explanation:
Racemization is said to occur when a 1:1 ratio of (+) and (-) enantiomers of a compound are produced in a reaction.
The reaction of optically active (R)-2-methylcyclohexanone with either aqueous base or acid leads to the formation of a planar enol species for reaction with acid and a planar enolate species for reaction with base.
Both reactions involves the formation of achiral species which reverts back to the chiral product with equal chances of the formation of both enantiomers of the product during the process. This leads to racemization of the product in both cases.
The heat released by reaction : C) -8870 J
<h3>Further explanation</h3>
Given
1.008 g of hydrogen
500.00 g water
The temperature rises 25.00 °C to 29.24 °C
Required
energy required
Solution
Q absorbed by water :
Q = m.c.Δt
Q = 500 g x 4.18 J/g C x (29.24-25)
Q = 8870.08 J
The reaction to produce HCl is an exothermic reaction (releasing heat), so that Q is negative
Q water = -Q HCl = -8870.08 J