Answer:
2x^2 +2x-4
——————
2x^2-4x+2
Factor out 2 from the expression
2(x^2+x-2)
—————-
2(x^2-2x+1)
Write x as a difference
2(x^2x-x-2)
—————-
2(x^2-2x+1)
Use a^2-2ab+b^2=(ab)^2
2(x^2x-x-2)
—————-
2(x-1)^2
Reduce the fraction with 2
x^2x-x-2
—————-
(x-1)^2
Factor out x from the expression
X*(x^2)-x-2
—————-
(x-1)^2
Factor out negative sign from the expression
X*(x+2)-(x-2)
—————-
(x-1)^2
Factor out x+2 from the expression
(x+2)(x-1)
—————-
(x-1)^2
Simplify the expression
x+2
——
x-1
Answer:
n < - 3 or n > - 2
Step-by-step explanation:
Inequalities of the type | x | > a , have solutions of the form
x < - a or x > a
Then
2n + 5 < - 1 or 2n + 5 > 1
Solve both inequalities
2n + 5 < - 1 ( subtract 5 from both sides )
2n < - 6 ( divide both sides by 2 )
n < - 3
OR
2n + 5 > 1 ( subtract 5 from both sides )
2n > - 4 ( divide both sides by 2 )
n > - 2
Solution is n < - 3 or n > - 2
Answer:
the square root of 75 is 8.6
and 8.6 times 3 is
the answer is 25.8
Hope This Helps!!!
The ratio of the distance between the foci and the length of the <em>major</em> axis is called eccentricity.
<h3>
Definitions of dimensions in ellipses</h3>
Dimensionally speaking, an ellipse is characterized by three variables:
- Length of the <em>major</em> semiaxis (
). - Length of the <em>minor</em> semiaxis (
). - Distance between the foci and the center of the ellipse (
).
And there is the following relationship:
(1)
Another variable that measure how "similar" is an ellipse to a circle is the eccentricity (
), which is defined by the following formula:
,
(2)
The greater the eccentricity, the more similar the ellipse to a circle.
Therefore, the ratio of the distance between the foci and the length of the <em>major</em> axis is called eccentricity. 
To learn more on ellipses, we kindly invite to check this verified question: brainly.com/question/19507943
La (4) (2) ce semn e intre ele?