Answer:
graph{3x+5 [-10, 10, -5, 5]}
x
intercept:
x
=
−
5
3
y
intercept:
y
=
5
Explanation:
For a linear graph, the quickest way to sketch the function is to determine the
x
and
y
intercepts and draw a line between the two: this line is our graph.
Let's calculate the
y
intercept first:
With any function,
y
intercepts where
x
=
0
.
Therefore, substituting
x
=
0
into the equation, we get:
y
=
3
⋅
0
+
5
y
=
5
Therefore, the
y
intercept cuts through the point (0,5)
Let's calculate the
x
intercept next:
Recall that with any function:
y
intercepts where
x
=
0
.
The opposite is also true: with any function
x
intercepts where
y
=
0
.
If we substitute
y
=
0
, we get:
0
=
3
x
+
5
Let's now rearrange and solve for
x
to calculate the
x
intercept.
−
5
=
3
x
−
5
3
=
x
Therefore, the
x
intercept cuts through the point
(
−
5
3
,
0
)
.
Now we have both the
x
and
y
intercepts, all we have to do is essentially plot both intercepts on a set of axis and draw a line between them
The graph of the function
y
=
3
x
+
5
:
graph{3x+5 [-10, 10, -5, 5]}
We are given with two functions: f(x) = x + 8 and g(x) = x2 - 6x - 7. In this problem, the value of f(g(2)) is asked. We first substitute g(x) to f(x) resulting to f(x2 - 6x - 7) = x2 - 6x - 7 + 8 = x2 - 6x + 1. If x is equal to 2, then <span>f(g(2)) = 2^</span>2 - 6*2 + 1 equal to -7.
Answer: where is the bar graph?
D,A,B,C i think this is correct !
Rotations move lines to lines, rays to rays, segments<span> to</span>segments<span>, </span>angles<span> to </span>angles, and parallel lines to parallel lines, similar to translations and reflections. Rotations preservelengths<span> of </span>segments<span> and degrees of measures of </span>angles<span>similar to translations and reflections.</span>