Rational exponents work as follows:
![a^{\frac{b}{c}}=\sqrt[c]{a^b}](https://tex.z-dn.net/?f=a%5E%7B%5Cfrac%7Bb%7D%7Bc%7D%7D%3D%5Csqrt%5Bc%5D%7Ba%5Eb%7D)
So, in your case, we have
![(x^3y^5)^{\frac{4}{3}} = \sqrt[3]{(x^3y^5)^4}=\sqrt[3]{x^{12}y^{20}}=\sqrt[3]{x^{12}y^{18}\cdot y^2}}=x^4y^6\sqrt[3]{y^2}](https://tex.z-dn.net/?f=%28x%5E3y%5E5%29%5E%7B%5Cfrac%7B4%7D%7B3%7D%7D%20%3D%20%5Csqrt%5B3%5D%7B%28x%5E3y%5E5%29%5E4%7D%3D%5Csqrt%5B3%5D%7Bx%5E%7B12%7Dy%5E%7B20%7D%7D%3D%5Csqrt%5B3%5D%7Bx%5E%7B12%7Dy%5E%7B18%7D%5Ccdot%20y%5E2%7D%7D%3Dx%5E4y%5E6%5Csqrt%5B3%5D%7By%5E2%7D)
The answer is D
Hope this helped
Answer:
A=104
Step-by-step explanation:
x=14 so u plug that into angle A's equation
Answer:
22.803
Step-by-step explanation:
multiple 30% by 76.01 equals 22.803
The number of possible selections is
C(58, 5) = 58!/(5!*53!) = 4,582,116