The specific volume will be different for various kinds of cells. The safe answer would be that the new cell will pretty much have the same volume as the one that it divided from. This is true for most eukaryotic cells unless other factors like epigenetics or mutations come into place.
One example of moments a cell would increase in volume is during hypertrophy. This simply means that the cell is increasing in size (compared to: hyperplasia -- which is an increase in number of the cells). Hypertrophy is definitely an increase in volume of the cell but this doesn't necessarily translate to cell division (i.e. just because the cell is big now, doesn't mean it will still be big when it divides).
Another moment of increasing volume of the cell and now also related to cell division would be during the two stages in the cell cycle (i.e., G1 and G2 phases). This is the growth phase of the cell preparing to divide. However when mitosis or division happens, the cells will normally end with the same volume as when it started.
This are safe generalizations referring to the human cells. It would help if a more specific kind of cell was given.
The proton is a subatomic particle found in the center of the atom.
In the physical sciences, subatomic particles are particles much smaller than atoms. There are two types of subatomic particles: elementary particles, which according to current theories are not made of other particles; and composite particles. Particle physics and nuclear physics study these particles and how they interact.
The square denotes male. One parent is recessive, so X must have at least one recessive allele. B is the right answer.
Answer:
they mine for hard materials in Florida so it would be, b,c,e.
Explanation: