Answer:
- x = log(y/4)/log(1.0256)
- your answer for y=12 is correct
Step-by-step explanation:
The question is asking you to solve ...
y = f(x)
for x. (In other words, find the inverse function.)
You already did this using a constant for y. Do the same thing with y instead of the constant.
y = 4(1.0256^x)
y/4 = 1.0256^x . . . . . . . divide by 4
log(y/4) = x·log(1.0256) . . . . . take logs
log(y/4)/log(1.0256) = x . . . . . divide by the coefficient of x
Now, you have a model for x in terms of y, which is what the question is asking for.
x = log(y/4)/log(1.0256) . . . . . . . exact expression
When y=12, this is ...
x = log(12/4)/log(1.0256) ≈ 43.46 . . . . weeks
_____
This is a linear equation in log(y), so can be written as such:
x = 91.0912·log(y) -54.8424 . . . . . approximate expression
Answer:
root(250)
answer choice C
Step-by-step explanation:
explanation in the pic above.
The expression that expresses all possible lengths of segment AB is 27 < AB < 81. The correct option is the second option 27 < AB < 81
<h3>Properties of a triangle</h3>
From the question, we are to determine the expression that expresses all possible lengths of segment AB
From one of the properties of a triangle,
The <u>third side</u> of any triangle is greater than the difference of the other <u>two sides</u>; and the <u>third side</u> of any triangle is lesser than the sum of the <u>two other sides</u>
Then, we can write that
AB < 27 + 54
and
AB > 54 - 27
Putting the two inequalities together, we get
54 - 27 < AB < 27 + 54
27 < AB < 81
Hence, the expression that expresses all possible lengths of segment AB is 27 < AB < 81. The correct option is the second option 27 < AB < 81
Learn more on the Properties of a triangle here: brainly.com/question/1851668
#SPJ1
Answer:
Step-by-step explanation:
<em>Key Differences Between Covariance and Correlation
</em>
<em>The following points are noteworthy so far as the difference between covariance and correlation is concerned:
</em>
<em>
</em>
<em>1. A measure used to indicate the extent to which two random variables change in tandem is known as covariance. A measure used to represent how strongly two random variables are related known as correlation.
</em>
<em>2. Covariance is nothing but a measure of correlation. On the contrary, correlation refers to the scaled form of covariance.
</em>
<em>3. The value of correlation takes place between -1 and +1. Conversely, the value of covariance lies between -∞ and +∞.
</em>
<em>4. Covariance is affected by the change in scale, i.e. if all the value of one variable is multiplied by a constant and all the value of another variable are multiplied, by a similar or different constant, then the covariance is changed. As against this, correlation is not influenced by the change in scale.
</em>
<em>5. Correlation is dimensionless, i.e. it is a unit-free measure of the relationship between variables. Unlike covariance, where the value is obtained by the product of the units of the two variables.
</em>
You can find more here: http://keydifferences.com/difference-between-covariance-and-correlation.html#ixzz4qg5YbiGj