Regarding your (1/10 divided by 2/5): I'm going to regard this as
(1/10) divided by (2/5).
First, write
1
---
10
Invert the fraction 2/5 and then multiply 1/10 by 5/2:
1(5)
-------- = 1/4, after reducing 5/10.
10(2)
Thus, <span>−34+(1/10÷2/5) yields -34 + 1/4, or -33 3/4.</span>
Let the number of large bookcases be x and number of small bookcases be y, then
Maximise P = 80x + 50y;
subkect to:
6x + 2y ≤ 24
x, y ≥ 2
The corner points are (2, 2), (2, 6), (3.333, 2)
For (2, 2): P = 80(2) + 50(2) = 160 + 100 = 260
For (2, 6): P = 80(2) + 50(6) = 160 + 300 = 460
For (3.333, 2): P = 80(3.333) + 50(2) = 266.67 + 100 = 366.67
Therefore, for maximum profit, he should produce 2 large bookcases and 6 small bookcases.
The answer is 6 as unit digit of number is 4 when you square you will get the unit digit 6
Step-by-step explanation:
<h3>
<em><u>Given</u></em><em><u>:</u></em></h3>
Length of the rectangle = 6.5 m
Width of the rectangule = 7.3 m
<h3>
<em><u>Then</u></em><em><u>:</u></em></h3>
<u>First</u><u> </u><u>case</u><u>,</u>
Area of the rectangle
= length × width
= 6.5 m × 7.3 m
= <em><u>47.45</u></em><em><u> </u></em><em><u>s</u></em><em><u>q</u></em><em><u>.</u></em><em><u>m</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em><em><u>(</u></em><em><u>i</u></em><em><u>)</u></em>
<u>Second</u><u> </u><u>case</u><u>,</u>
Perimeter of the rectangle
= 2(length + width)
= 2(6.5 + 7.3)m
= 2 × 13.8 m
= <em><u>27</u></em><em><u>.</u></em><em><u>6</u></em><em><u> </u></em><em><u>m</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em><em><u>(</u></em><em><u>ii</u></em><em><u>)</u></em>
Answer:
B. No

Step-by-step explanation:
-A right angle triangle has two complimentary acute angles and one right angle.
-
is usually one of the acute angles and is equivalent to 90º minus it's complimentary acute angle.
-Complimentary angles add up to 90º.
#For complimentary angles:

The two acute angles cannot have the same Cosine value.
Hence, she's not correct.